El Dr. Alejandro Trejo se graduó de doctorado en Comunicaciones y Electrónica en el 2015 en la Escuela Superior de Ingeniería Mecánica y Eléctrica unidad Culhuacan, desde el 2016 hasta la fecha realiza investigación sobre las propiedades electrónicas, ópticas y vibracionales de semiconductores binarios nanoestructurados, y sus posibles aplicaciones en fuentes alternas de energía en celdas solares, almacenamiento de energía, y emisión de fotones únicos para computación y comunicaciones cuánticas. Ha publicado más de 30 artículos en revistas internacionales indizadas en el JCR y ha participado en más de 50 congresos nacionales e internacionales, con trabajos en modalidad, poster, oral y conferencia magistral. Ha graduado a 9 estudiantes de maestría y asesorado dos proyectos terminales de licenciatura. Se encuentra asesorando o co-asesorando actualmente dos tesis del doctorado en Energía y una en el Doctorado en Comunicaciones y Electrónica. Entre sus reconocimientos se encuentran: Investigador nacional nivel 1 del sistema nacional de investigadores desde el 2015 hasta la fecha, ganador premio a la investigación del instituto politécnico nacional en la modalidad de Investigación realizada por jóvenes investigadores, dos veces ganador de la Presea Lázaro Cárdenas por mejor aprovechamiento en maestría y doctorado, Premio a la mejor Tesis de Maestría del Instituto Politécnico Nacional, Premio a la Mejor tesis de doctorado del Instituto de Investigaciones en Materiales de La Universidad Nacional Autónoma de México, mención honorífica en su examen de grado de Maestría y Doctorado, y en el examen profesional de Licenciatura. Miembro de las redes de Energía y Micro y Nano tecnología del Instituto Politécnico Nacional.
Enlaces a perfiles en distintas plataformas:
González, I.; Nava, R.; Cruz-Irisson, M.; Río, J. A.; Ornelas-Cruz, I.; Pilo, J.; Rubo, Y. G.; Trejo, A.; Tagüeña, J.
First-principles study of interstitial Li effects on the electronic, structural and diffusion properties of highly boron-doped porous silicon Artículo de revista
En: Journal of Energy Storage, vol. 102, pp. 114087, 2024, ISSN: 2352-152X.
Resumen | Enlaces | BibTeX | Etiquetas: B-doping, Bulk modulus, Diffusion path, electronic properties, Li-ion battery, porous silicon
@article{GONZALEZ2024114087,
title = {First-principles study of interstitial Li effects on the electronic, structural and diffusion properties of highly boron-doped porous silicon},
author = {I. Gonz\'{a}lez and R. Nava and M. Cruz-Irisson and J. A. R\'{i}o and I. Ornelas-Cruz and J. Pilo and Y. G. Rubo and A. Trejo and J. Tag\"{u}e\~{n}a},
url = {https://www.sciencedirect.com/science/article/pii/S2352152X24036739},
doi = {https://doi.org/10.1016/j.est.2024.114087},
issn = {2352-152X},
year = {2024},
date = {2024-01-01},
urldate = {2024-01-01},
journal = {Journal of Energy Storage},
volume = {102},
pages = {114087},
abstract = {Silicon-based anodes for Li-ion batteries have been the subject of intense research due to their high storage capacity, low working potential, and abundant resources. Nevertheless, the low electrical conductivity, large volume changes and slow Li ion diffusivity in silicon have hampered its performance. In this work, we modelled B-doped porous silicon passivated with hydrogen to analyse the effect of interstitial Li atoms on its electronic, structural, and diffusion properties by the density functional theory (DFT). Results show that high boron doping induces metallic properties in porous silicon, which are also improved by interstitial Li atoms. The metallic behaviour of porous Si is detailed by the calculations of the effective masses and the Fermi surfaces. Conversely, the B atoms produce volumetric compression, which partially compensates for the volumetric expansion generated by the interstitial Li atoms. Furthermore, the bulk moduli of the B-doped porous structure and the B-doped porous structure with the highest Li concentration here considered show a variation of 0.2 % and 0.37 %, respectively. These results suggest that the addition of large amounts of B and Li atoms slightly reduces the hydrostatic compressive strength of the porous silicon. Finally, we found that the dopant contributes to the asymmetric Li diffusion activation since the energy barrier of 0.86 eV must be overcome when Li migration occurs from the interior to the edge of the wall. In contrast, in the opposite direction, the energy barrier increases to 1.43 eV. This implies that the Li atom could preferentially be stored in the pore surface area.},
keywords = {B-doping, Bulk modulus, Diffusion path, electronic properties, Li-ion battery, porous silicon},
pubstate = {published},
tppubtype = {article}
}
© 2022 Grupo de Investigación en Nanociencias de ESIME Culhuacan | All Rights Reserved. | Hecho por Vleeko Agencia de Marketing Digital CDMX
¡Escríbenos!