Estudió la carrera de Ingeniería en Comunicaciones y Electrónica de 1999 a 2003 en la Escuela Superior de Ingeniería en Mecánica y Eléctrica (ESIME) Unidad de Culhuacán del Instituto Politécnico Nacional (IPN). Posteriormente realizo la Maestría en Ciencias de Ingeniería en Microelectrónica del 2004 al 2006 y el Doctorado en Comunicaciones y Electrónica del 2007 al 2010 en la Sección de Estudio de Posgrado e Investigación en la ESIME Culhuacán bajo la dirección del Dr. Miguel Cruz Irisson. Realizó una estancia de investigación en la Universidad Autónoma de Barcelona es España en el 2009 bajo la supervisión del Dr. Riccardo Rurali, como parte de estudios doctorales. Recibió el Premio al mejor desempeño académico del Doctorado en Comunicaciones y Electrónica en el 2008, recibió mención honorífica en su examen de grado del doctorado, así como el ganador al premio a la mejor tesis doctoral 2010 del IPN. El Dr. Miranda realizó una estancia posdoctoral en el Instituto de Ciencias de Materiales de Barcelona España, bajo la dirección del Dr. Enric Canadell del 2011 al 2013, posteriormente regresa a México a realizar una estancia posdoctoral en el Instituto de Física de la UNAM, bajo la supervisión del Dr. Luis Antonio Pérez del 2013 al 2015. En el 2015 ha seleccionado por parte del CONACYT como ganador de una beca de Retención para realizar investigación en el Instituto Politécnico Nacional, posteriormente es contratado por parte del Instituto Politécnico Nacional desde el 2016, con contrato definitivo a partir del 2020. A la fecha ha dirigido 1 tesis doctoral, 10 tesis de maestría, una de licenciatura, actualmente dirige 1 tesis doctoral, 3 tesis de maestría y 2 tesis de licenciatura. Ha publicado un total de 43 artículos científicos. Como resultado de sus estudios doctorales recibió la distinción de Investigador Nacional Nivel I, por parte del Sistema Nacional de Investigadores desde el 2012, nombramiento que tiene vigente a la fecha. Sus intereses en investigación son principalmente el estudio de las propiedades físicas y químicas de sistemas de baja dimensionalidad y sus aplicaciones en la electrónica, en particular como sensores, y en el almacenamiento de energía, tales como almacenamiento de hidrógeno y baterías.
Enlaces a perfiles académicos:
Santana, José Eduardo; Sosa, Akari Narayama; Santiago, Francisco De; Miranda, Álvaro; Pérez, Luis Antonio; Trejo, Alejandro; Salazar, Fernando; Cruz-Irisson, Miguel
Highly sensitive amphetamine drug detection based on silicon nanowires: Theoretical investigation Artículo de revista
En: Surfaces and Interfaces, vol. 36, pp. 102584, 2023, ISSN: 2468-0230.
Resumen | Enlaces | BibTeX | Etiquetas: Amphetamine, DFT, Doping, Drug, Sensor, Silicon nanowires
@article{SANTANA2023102584,
title = {Highly sensitive amphetamine drug detection based on silicon nanowires: Theoretical investigation},
author = {Jos\'{e} Eduardo Santana and Akari Narayama Sosa and Francisco De Santiago and \'{A}lvaro Miranda and Luis Antonio P\'{e}rez and Alejandro Trejo and Fernando Salazar and Miguel Cruz-Irisson},
url = {https://www.sciencedirect.com/science/article/pii/S2468023022008392},
doi = {https://doi.org/10.1016/j.surfin.2022.102584},
issn = {2468-0230},
year = {2023},
date = {2023-01-01},
journal = {Surfaces and Interfaces},
volume = {36},
pages = {102584},
abstract = {Amphetamine (AA) is used in some therapeutic treatments, but it is also one of the most widely used illicit drugs. Therefore, a correct tracking of AA in various environments is crucial for its controlled distribution even inside the human body. However, current sensors are still too large to fit inside the human body and their biocompatibility is still deficient. Since the discovery of nanostructures, especially silicon nanowires (SiNWs), the possibilities of sensors inside the human body have increased due to their enhanced properties and biocompatibility. However, theoretical studies about the capabilities of SiNWs with surface modifications as sensing materials are still scarce. Using Density Functional Theory, we investigate the effects of amphetamine adsorption on the work function, and other electronic and structural properties, of pristine and modified SiNWs. Two types of modifications were studied, i.e., substitutional doping with B, Al, and Ga atoms and surface functionalization with the same species. The adsorption energies of the amphetamine molecule are larger for the doped nanowires, followed by the functionalized ones, and lastly, the undoped Si nanowire.This study shows that undoped, doped, and functionalized SiNWs are excellent candidates for AA sensing, with B being the best chemical species for improving AA adsorption for both doped and functionalized schemes.},
keywords = {Amphetamine, DFT, Doping, Drug, Sensor, Silicon nanowires},
pubstate = {published},
tppubtype = {article}
}
© 2022 Grupo de Investigación en Nanociencias de ESIME Culhuacan | All Rights Reserved. | Hecho por Vleeko Agencia de Marketing Digital CDMX
¡Escríbenos!