Estudió la carrera de Ingeniería en Comunicaciones y Electrónica de 1999 a 2003 en la Escuela Superior de Ingeniería en Mecánica y Eléctrica (ESIME) Unidad de Culhuacán del Instituto Politécnico Nacional (IPN). Posteriormente realizo la Maestría en Ciencias de Ingeniería en Microelectrónica del 2004 al 2006 y el Doctorado en Comunicaciones y Electrónica del 2007 al 2010 en la Sección de Estudio de Posgrado e Investigación en la ESIME Culhuacán bajo la dirección del Dr. Miguel Cruz Irisson. Realizó una estancia de investigación en la Universidad Autónoma de Barcelona es España en el 2009 bajo la supervisión del Dr. Riccardo Rurali, como parte de estudios doctorales. Recibió el Premio al mejor desempeño académico del Doctorado en Comunicaciones y Electrónica en el 2008, recibió mención honorífica en su examen de grado del doctorado, así como el ganador al premio a la mejor tesis doctoral 2010 del IPN. El Dr. Miranda realizó una estancia posdoctoral en el Instituto de Ciencias de Materiales de Barcelona España, bajo la dirección del Dr. Enric Canadell del 2011 al 2013, posteriormente regresa a México a realizar una estancia posdoctoral en el Instituto de Física de la UNAM, bajo la supervisión del Dr. Luis Antonio Pérez del 2013 al 2015. En el 2015 ha seleccionado por parte del CONACYT como ganador de una beca de Retención para realizar investigación en el Instituto Politécnico Nacional, posteriormente es contratado por parte del Instituto Politécnico Nacional desde el 2016, con contrato definitivo a partir del 2020. A la fecha ha dirigido 1 tesis doctoral, 10 tesis de maestría, una de licenciatura, actualmente dirige 1 tesis doctoral, 3 tesis de maestría y 2 tesis de licenciatura. Ha publicado un total de 43 artículos científicos. Como resultado de sus estudios doctorales recibió la distinción de Investigador Nacional Nivel I, por parte del Sistema Nacional de Investigadores desde el 2012, nombramiento que tiene vigente a la fecha. Sus intereses en investigación son principalmente el estudio de las propiedades físicas y químicas de sistemas de baja dimensionalidad y sus aplicaciones en la electrónica, en particular como sensores, y en el almacenamiento de energía, tales como almacenamiento de hidrógeno y baterías.
Enlaces a perfiles académicos:
Jiménez-Sánchez, Ricardo; Morales-Vergara, Pedro; Heredia, Alma R.; Rebollo-Paz, Jacqueline; Miranda, Álvaro; Trejo, Alejandro; Salazar, Fernando; Pérez, Luis Antonio; Cruz-Irisson, Miguel
DFT insight into the structural, vibrational, and electronic properties of thin [110] Ge nanowires as anodic material for Li batteries Artículo de revista
En: Materials Today Communications, vol. 41, pp. 110526, 2024, ISSN: 2352-4928.
Resumen | Enlaces | BibTeX | Etiquetas: Anodic materials, Density Functional Theory, Ge nanowires, Li batteries
@article{JIMENEZSANCHEZ2024110526,
title = {DFT insight into the structural, vibrational, and electronic properties of thin [110] Ge nanowires as anodic material for Li batteries},
author = {Ricardo Jim\'{e}nez-S\'{a}nchez and Pedro Morales-Vergara and Alma R. Heredia and Jacqueline Rebollo-Paz and \'{A}lvaro Miranda and Alejandro Trejo and Fernando Salazar and Luis Antonio P\'{e}rez and Miguel Cruz-Irisson},
url = {https://www.sciencedirect.com/science/article/pii/S2352492824025078},
doi = {https://doi.org/10.1016/j.mtcomm.2024.110526},
issn = {2352-4928},
year = {2024},
date = {2024-01-01},
urldate = {2024-01-01},
journal = {Materials Today Communications},
volume = {41},
pages = {110526},
abstract = {Germanium nanowires could be used to improve as anodic materials since their charge rate is better than that of the current graphite electrodes. In this work, we present a Density Functional Theory study of the effect of interstitial Li atoms on the vibrational, electronic, and mechanical properties of ultrathin hydrogen-passivated Ge nanowires (HGeNWs) with diamond structure, grown along the [110] crystallographic direction, and with a diameter of ∼14.4 r{A}. The interstitial Li atoms were placed at the tetrahedral positions (Td) reported as the more favorable ones. The phonon band structure of the HGeNWs reveals the existence of high frequency vibrations due to the hydrogen atoms at the nanowire surface. The effect of one interstitial Li atom in the nanowire leads to the apparition of three flat phonon bands almost independent of the collective vibrational states of the nanowire, reflecting a weak interaction between the Li atom and the neighboring ones; and a shift of the high vibrational modes to lower frequencies that results in more dispersive states. The electronic band structure confirms a transition from semiconducting to metallic behavior by adding a single Li interstitial atom per unit cell. The formation energies indicate that the nanowires with interstitial Li atoms are stable, and the average binding energy per Li atom slightly increases as a function of the concentration of Li atoms. The insertion of Li atoms in the nanowire leads to a volumetric expansion, without fracture or broken bonds. Even more, the redistribution of the electronic charge due to the Li atoms give the Ge-Ge bonds more axial elasticity and the values of the modulus of Young are almost constant for all studied concentrations of Li atoms. These theoretical results indicate an improvement of mechanical and electronic properties of Ge nanowires through the addition of interstitial Li atoms that could be important for their use as anodes in rechargeable Li batteries.},
keywords = {Anodic materials, Density Functional Theory, Ge nanowires, Li batteries},
pubstate = {published},
tppubtype = {article}
}
© 2022 Grupo de Investigación en Nanociencias de ESIME Culhuacan | All Rights Reserved. | Hecho por Vleeko Agencia de Marketing Digital CDMX
¡Escríbenos!