Estudió la carrera de Ingeniería en Comunicaciones y Electrónica de 1999 a 2003 en la Escuela Superior de Ingeniería en Mecánica y Eléctrica (ESIME) Unidad de Culhuacán del Instituto Politécnico Nacional (IPN). Posteriormente realizo la Maestría en Ciencias de Ingeniería en Microelectrónica del 2004 al 2006 y el Doctorado en Comunicaciones y Electrónica del 2007 al 2010 en la Sección de Estudio de Posgrado e Investigación en la ESIME Culhuacán bajo la dirección del Dr. Miguel Cruz Irisson. Realizó una estancia de investigación en la Universidad Autónoma de Barcelona es España en el 2009 bajo la supervisión del Dr. Riccardo Rurali, como parte de estudios doctorales. Recibió el Premio al mejor desempeño académico del Doctorado en Comunicaciones y Electrónica en el 2008, recibió mención honorífica en su examen de grado del doctorado, así como el ganador al premio a la mejor tesis doctoral 2010 del IPN. El Dr. Miranda realizó una estancia posdoctoral en el Instituto de Ciencias de Materiales de Barcelona España, bajo la dirección del Dr. Enric Canadell del 2011 al 2013, posteriormente regresa a México a realizar una estancia posdoctoral en el Instituto de Física de la UNAM, bajo la supervisión del Dr. Luis Antonio Pérez del 2013 al 2015. En el 2015 ha seleccionado por parte del CONACYT como ganador de una beca de Retención para realizar investigación en el Instituto Politécnico Nacional, posteriormente es contratado por parte del Instituto Politécnico Nacional desde el 2016, con contrato definitivo a partir del 2020. A la fecha ha dirigido 1 tesis doctoral, 10 tesis de maestría, una de licenciatura, actualmente dirige 1 tesis doctoral, 3 tesis de maestría y 2 tesis de licenciatura. Ha publicado un total de 43 artículos científicos. Como resultado de sus estudios doctorales recibió la distinción de Investigador Nacional Nivel I, por parte del Sistema Nacional de Investigadores desde el 2012, nombramiento que tiene vigente a la fecha. Sus intereses en investigación son principalmente el estudio de las propiedades físicas y químicas de sistemas de baja dimensionalidad y sus aplicaciones en la electrónica, en particular como sensores, y en el almacenamiento de energía, tales como almacenamiento de hidrógeno y baterías.
Enlaces a perfiles académicos:
González, Israel; Pilo, Jorge; Trejo, Alejandro; Miranda, Álvaro; Salazar, Fernando; Nava, Rocío; Cruz-Irisson, Miguel
Sodium effects on the electronic and structural properties of porous silicon for energy storage Artículo de revista
En: International Journal of Energy Research, vol. 46, no 7, pp. 8760-8780, 2022.
Resumen | Enlaces | BibTeX | Etiquetas: DFT, Na-batteries, NEB, porous silicon
@article{https://doi.org/10.1002/er.7754,
title = {Sodium effects on the electronic and structural properties of porous silicon for energy storage},
author = {Israel Gonz\'{a}lez and Jorge Pilo and Alejandro Trejo and \'{A}lvaro Miranda and Fernando Salazar and Roc\'{i}o Nava and Miguel Cruz-Irisson},
url = {https://onlinelibrary.wiley.com/doi/abs/10.1002/er.7754},
doi = {https://doi.org/10.1002/er.7754},
year = {2022},
date = {2022-01-01},
journal = {International Journal of Energy Research},
volume = {46},
number = {7},
pages = {8760-8780},
abstract = {Summary Porous silicon is a promising anode material in Na-ion batteries, however, there are still no theoretical studies describing the Na storage mechanism within this material. In this work, we present a density functional theory study on the effects of interstitial and substitutional Na atoms on the electronic and structural properties of hydrogen-passivated porous silicon (pSiH). The results show that the substitutional Na reduces the band gap, while the interstitial Na induces metallic properties on the pSiH. The diffusion analysis by the nudged elastic band scheme, reveals that the interstitial Na atoms migrate from the silicon lattice to the pore surface, while the pSiH energy barrier decreases by 20.42% relative to the bulk silicon energy barrier value. Finally, the hydrogenated surface proves to be beneficial for both Na adsorption and diffusion. These results could be important for understanding the storage and diffusion mechanism of Na on pSiH .},
keywords = {DFT, Na-batteries, NEB, porous silicon},
pubstate = {published},
tppubtype = {article}
}
González, Israel; Santiago, Francisco De; Arellano, Lucía G.; Miranda, Álvaro; Trejo, Alejandro; Salazar, Fernando; Cruz-Irisson, Miguel
Theoretical modelling of porous silicon decorated with metal atoms for hydrogen storage Artículo de revista
En: International Journal of Hydrogen Energy, vol. 45, no 49, pp. 26321-26333, 2020, ISSN: 0360-3199, (Progress in Hydrogen Production and Utilization).
Resumen | Enlaces | BibTeX | Etiquetas: Beryllium, DFT, Hydrogen storage, Lithium, Palladium, porous silicon
@article{GONZALEZ202026321,
title = {Theoretical modelling of porous silicon decorated with metal atoms for hydrogen storage},
author = {Israel Gonz\'{a}lez and Francisco De Santiago and Luc\'{i}a G. Arellano and \'{A}lvaro Miranda and Alejandro Trejo and Fernando Salazar and Miguel Cruz-Irisson},
url = {https://www.sciencedirect.com/science/article/pii/S0360319920318784},
doi = {https://doi.org/10.1016/j.ijhydene.2020.05.097},
issn = {0360-3199},
year = {2020},
date = {2020-01-01},
journal = {International Journal of Hydrogen Energy},
volume = {45},
number = {49},
pages = {26321-26333},
abstract = {There is experimental evidence suggesting that metal adatoms enhance the physisorption of hydrogen molecules in porous silicon. However, theoretical reports about the physical properties for this material to be suitable for hydrogen storage are scarce. Thus, in this work we employ Density Functional Theory to study the effects of decoration with metals on the hydrogen-adsorption properties on hydrogen-passivated porous silicon. The results indicate that lithium and palladium decorating atoms are strongly bonded to the porous silicon\textemdashpreventing the adverse effects of clusterization\textemdashwhile beryllium is not. Lithium and palladium exhibit physisorption capacity up to 5 and 4 hydrogen molecules per adatom, respectively. In contrast, adsorption of hydrogen molecules in beryllium is too weak as the adatom is not chemisorbed on the surface of the pore. The hydrogen passivation of the pore surface proves to be beneficial for a strong chemisorption of the decorating atoms.},
note = {Progress in Hydrogen Production and Utilization},
keywords = {Beryllium, DFT, Hydrogen storage, Lithium, Palladium, porous silicon},
pubstate = {published},
tppubtype = {article}
}
Santiago, Francisco; Santana, José Eduardo; Miranda, Álvaro; Trejo, Alejandro; Vázquez-Medina, Rubén; Pérez, Luis Antonio; Cruz-Irisson, Miguel
Quasi-one-dimensional silicon nanostructures for gas molecule adsorption: a DFT investigation Artículo de revista
En: Applied Surface Science, vol. 475, pp. 278-284, 2019, ISSN: 0169-4332.
Resumen | Enlaces | BibTeX | Etiquetas: Chemical sensors, Density Functional Theory, Molecule adsorption, porous silicon, Sensing, Silicon nanowires
@article{DESANTIAGO2019278,
title = {Quasi-one-dimensional silicon nanostructures for gas molecule adsorption: a DFT investigation},
author = {Francisco Santiago and Jos\'{e} Eduardo Santana and \'{A}lvaro Miranda and Alejandro Trejo and Rub\'{e}n V\'{a}zquez-Medina and Luis Antonio P\'{e}rez and Miguel Cruz-Irisson},
url = {https://www.sciencedirect.com/science/article/pii/S0169433218336109},
doi = {https://doi.org/10.1016/j.apsusc.2018.12.258},
issn = {0169-4332},
year = {2019},
date = {2019-01-01},
journal = {Applied Surface Science},
volume = {475},
pages = {278-284},
abstract = {Porous structures offer an enormous surface suitable for gas sensing, however, the effects of their quantum quasi-confinement on their molecular sensing capacities has been seldom studied. In this work the gas-sensing capability of silicon nanopores is investigated by comparing it to silicon nanowires using first principles calculations. In particular, the adsorption of toxic gas molecules CO, NO, SO2 and NO2 on both silicon nanopores and nanowires with the same cross sections was studied. Results show that sensing-related properties of silicon nanopores and nanowires are very similar, suggesting that surface effects are predominant over the confinement. However, there are certain cases where there are remarked differences between the nanowire and porous cases, for instance, CO-adsorbed nanoporous silicon shows a metallic band structure unlike its nanowire counterpart, which remains semiconducting, suggesting that quantum quasi-confinement may be playing an important role in this behaviour. These results are significant in the study of the quantum phenomena behind the adsorption of gas molecules on nanostructure’s surfaces, with possible applications in chemical detectors or catalysts.},
keywords = {Chemical sensors, Density Functional Theory, Molecule adsorption, porous silicon, Sensing, Silicon nanowires},
pubstate = {published},
tppubtype = {article}
}
© 2022 Grupo de Investigación en Nanociencias de ESIME Culhuacan | All Rights Reserved. | Hecho por Vleeko Agencia de Marketing Digital CDMX
¡Escríbenos!