Estudió la carrera de Ingeniería en Comunicaciones y Electrónica de 1999 a 2003 en la Escuela Superior de Ingeniería en Mecánica y Eléctrica (ESIME) Unidad de Culhuacán del Instituto Politécnico Nacional (IPN). Posteriormente realizo la Maestría en Ciencias de Ingeniería en Microelectrónica del 2004 al 2006 y el Doctorado en Comunicaciones y Electrónica del 2007 al 2010 en la Sección de Estudio de Posgrado e Investigación en la ESIME Culhuacán bajo la dirección del Dr. Miguel Cruz Irisson. Realizó una estancia de investigación en la Universidad Autónoma de Barcelona es España en el 2009 bajo la supervisión del Dr. Riccardo Rurali, como parte de estudios doctorales. Recibió el Premio al mejor desempeño académico del Doctorado en Comunicaciones y Electrónica en el 2008, recibió mención honorífica en su examen de grado del doctorado, así como el ganador al premio a la mejor tesis doctoral 2010 del IPN. El Dr. Miranda realizó una estancia posdoctoral en el Instituto de Ciencias de Materiales de Barcelona España, bajo la dirección del Dr. Enric Canadell del 2011 al 2013, posteriormente regresa a México a realizar una estancia posdoctoral en el Instituto de Física de la UNAM, bajo la supervisión del Dr. Luis Antonio Pérez del 2013 al 2015. En el 2015 ha seleccionado por parte del CONACYT como ganador de una beca de Retención para realizar investigación en el Instituto Politécnico Nacional, posteriormente es contratado por parte del Instituto Politécnico Nacional desde el 2016, con contrato definitivo a partir del 2020. A la fecha ha dirigido 1 tesis doctoral, 10 tesis de maestría, una de licenciatura, actualmente dirige 1 tesis doctoral, 3 tesis de maestría y 2 tesis de licenciatura. Ha publicado un total de 43 artículos científicos. Como resultado de sus estudios doctorales recibió la distinción de Investigador Nacional Nivel I, por parte del Sistema Nacional de Investigadores desde el 2012, nombramiento que tiene vigente a la fecha. Sus intereses en investigación son principalmente el estudio de las propiedades físicas y químicas de sistemas de baja dimensionalidad y sus aplicaciones en la electrónica, en particular como sensores, y en el almacenamiento de energía, tales como almacenamiento de hidrógeno y baterías.
Enlaces a perfiles académicos:
Rosas, Sergio L.; Cid, Brandom J.; Santana, José E.; Heredia, Alma R.; Hernández-Hernández, Ivonne J.; Miranda, Álvaro
Doped germanene as anchoring material for lithium polysulfides for Li-S batteries: A DFT study Artículo de revista
En: Materials Letters, vol. 379, pp. 137715, 2025, ISSN: 0167-577X.
Resumen | Enlaces | BibTeX | Etiquetas: 2D materials, DFT, Doping, Energy, Germanene, Li-S battery
@article{ROSAS2025137715,
title = {Doped germanene as anchoring material for lithium polysulfides for Li-S batteries: A DFT study},
author = {Sergio L. Rosas and Brandom J. Cid and Jos\'{e} E. Santana and Alma R. Heredia and Ivonne J. Hern\'{a}ndez-Hern\'{a}ndez and \'{A}lvaro Miranda},
url = {https://www.sciencedirect.com/science/article/pii/S0167577X2401855X},
doi = {https://doi.org/10.1016/j.matlet.2024.137715},
issn = {0167-577X},
year = {2025},
date = {2025-01-01},
urldate = {2025-01-01},
journal = {Materials Letters},
volume = {379},
pages = {137715},
abstract = {Lithium-sulfur batteries face significant challenges due to the dissolution of lithium polysulfides (LiPSs), commonly known as the shuttle effect, which leads to a loss in charge capacity. This study uses density functional theory (DFT) calculations, with van der Waals corrections, to investigate the polysulfide anchoring potential of a boron-doped germanene monolayer (B-2DGe). The results show that the adsorption energies of LiPSs on B-2DGe range from 1.46 to 3.39 eV. Furthermore, all LiPSs on B-2DGe exhibit conductive behavior. These findings suggest that B-2DGe, as a LiPS substrate, reduces the shuttle effect and prevents polysulfide agglomeration at electrodes, improving the performance of Li-S batteries.},
keywords = {2D materials, DFT, Doping, Energy, Germanene, Li-S battery},
pubstate = {published},
tppubtype = {article}
}
Sosa, Akari N.; Santana, José E.; Miranda, Álvaro; Pérez, Luis A.; Rurali, Riccardo; Cruz-Irisson, Miguel
Transition metal-decorated germanene for NO, N2 and O2 sensing: A DFT study Artículo de revista
En: Surfaces and Interfaces, vol. 30, pp. 101886, 2022, ISSN: 2468-0230.
Resumen | Enlaces | BibTeX | Etiquetas: DFT, Germanene, metal-decoration, nitrogen monoxide, Sensing
@article{SOSA2022101886,
title = {Transition metal-decorated germanene for NO, N2 and O2 sensing: A DFT study},
author = {Akari N. Sosa and Jos\'{e} E. Santana and \'{A}lvaro Miranda and Luis A. P\'{e}rez and Riccardo Rurali and Miguel Cruz-Irisson},
url = {https://www.sciencedirect.com/science/article/pii/S2468023022001651},
doi = {https://doi.org/10.1016/j.surfin.2022.101886},
issn = {2468-0230},
year = {2022},
date = {2022-01-01},
journal = {Surfaces and Interfaces},
volume = {30},
pages = {101886},
abstract = {Detecting hazardous and toxic gasses is important to avoid harmful effects on human health and two-dimensional nanostructures have emerged as candidate materials for sensing or scavenging gasses. The chemical interactions between NO, O2, and N2 gas molecules and Cu-, Ag-, and Au-decorated germanene were investigated by using density functional theory simulations, and the potential applications as gas sensors or scavengers were addressed. Except for O2, the studied molecules were physisorbed on pristine germanene, where the most favorable adsorption site is located at the middle of the lattice hexagon, with adsorption energy values ranging from 0.09 eV for the N2 to 0.49 eV for NO adsorbed through the N atom. The results also show that the studied molecules have larger adsorption energies in Cu-, Ag-, and Au-decorated germanene, with energy values of 0.4 eV for the N2 molecule and 1.04 eV for the NO molecule. Therefore, molecule-metal-germanene complexes are more energetically favorable than the molecule-germanene ones and are thus predicted to have an enhanced sensing capability. The larger NO adsorption energies on Ag- (0.8 eV) and Au- (0.87 eV) decorated germanene, in comparison with those of N2 (around 0.1 eV) and O2 (around 0.37 eV), indicate their good selectivity towards NO. To estimate their potential application as NO sensors in gas-insulated switchgear, we calculated the work function and desorption time of the studied molecules adsorbed on Cu-, Ag-, and Au-decorated germanene, obtaining considerable changes in the work function (around 0.5 eV) between the different molecules adsorbed on Cu-decorated germanene, and recovery times of the order of seconds at a temperature of 400 K. The results suggest that metal-germanene complexes are stable in ambient conditions and they are good candidates for sensing and scavenging nitrogen monoxide.},
keywords = {DFT, Germanene, metal-decoration, nitrogen monoxide, Sensing},
pubstate = {published},
tppubtype = {article}
}
Sosa, Akari Narayama; Miranda, Álvaro; Pérez, Luis Antonio; Trejo, Alejandro; Cruz-Irisson, Miguel
CO and CO2 adsorption performance of transition metal-functionalized germanene Artículo de revista
En: Materials Letters, vol. 300, pp. 130201, 2021, ISSN: 0167-577X.
Resumen | Enlaces | BibTeX | Etiquetas: 2D materials, Adsorption energy, DFT, Gas sensing, Germanene, Sensors
@article{SOSA2021130201,
title = {CO and CO2 adsorption performance of transition metal-functionalized germanene},
author = {Akari Narayama Sosa and \'{A}lvaro Miranda and Luis Antonio P\'{e}rez and Alejandro Trejo and Miguel Cruz-Irisson},
url = {https://www.sciencedirect.com/science/article/pii/S0167577X21008983},
doi = {https://doi.org/10.1016/j.matlet.2021.130201},
issn = {0167-577X},
year = {2021},
date = {2021-01-01},
journal = {Materials Letters},
volume = {300},
pages = {130201},
abstract = {In this work, the pristine and transition metal (TM)-functionalized germanene are investigated for sensing applications. Firstly, the detection of CO and CO2 molecules by pristine germanene is considered, and the numerical results show that adsorption energy values are in the physisorption range. Then, the adsorption of CO and CO2 molecules on Cu-, Ag-, and Au-functionalized germanene is studied. Results show that germanene functionalization with TM atoms considerably improves the interaction towards CO molecule when bound through the C atom [CO(C)], in the chemisorption range. On the other hand, numerical results show that the germanene sensing capabilities for the CO(O) and CO2 molecules do not improve with TM, these were adsorbed in the physisorption interval. Results suggest that the TM-functionalized germanene can have potential uses in CO sensing.},
keywords = {2D materials, Adsorption energy, DFT, Gas sensing, Germanene, Sensors},
pubstate = {published},
tppubtype = {article}
}
Sosa, Akari Narayama; Santiago, Francisco; Miranda, Álvaro; Trejo, Alejandro; Salazar, Fernando; Pérez, Luis Antonio; Cruz-Irisson, Miguel
Alkali and transition metal atom-functionalized germanene for hydrogen storage: A DFT investigation Artículo de revista
En: International Journal of Hydrogen Energy, vol. 46, no 38, pp. 20245-20256, 2021, ISSN: 0360-3199, (International Journal of Hydrogen Energy Special Issue devoted to the 32nd International Conference ECOS 2019).
Resumen | Enlaces | BibTeX | Etiquetas: 2D materials, Decoration, Density Functional Theory, Germanene, Hydrogen storage, Renewable energy storage
@article{SOSA202120245,
title = {Alkali and transition metal atom-functionalized germanene for hydrogen storage: A DFT investigation},
author = {Akari Narayama Sosa and Francisco Santiago and \'{A}lvaro Miranda and Alejandro Trejo and Fernando Salazar and Luis Antonio P\'{e}rez and Miguel Cruz-Irisson},
url = {https://www.sciencedirect.com/science/article/pii/S0360319920315329},
doi = {https://doi.org/10.1016/j.ijhydene.2020.04.129},
issn = {0360-3199},
year = {2021},
date = {2021-01-01},
journal = {International Journal of Hydrogen Energy},
volume = {46},
number = {38},
pages = {20245-20256},
abstract = {In this work, we have performed density functional theory-based calculations to study the adsorption of H2 molecules on germanene decorated with alkali atoms (AM) and transition metal atoms (TM). The cohesive energy indicates that interaction between AM (TM) atoms and germanene is strong. The values of the adsorption energies of H2 molecules on the AM or TM atoms are in the range physisorption. The K-decorated germanene has the largest storage capacity, being able to bind up to six H2 molecules, whereas the Au and Na atoms adsorbed five and four H2 molecules, respectively. Li and Ag atoms can bind a maximum of three H2 molecules, while Cu-decorated germanene only adsorbed one H2 molecule. Formation energies show that all the studied cases of H2 molecules adsorbed on AM and TM atom-decorated germanene are energetically favorable. These results indicate that decorated germanene can serve as a hydrogen storage system.},
note = {International Journal of Hydrogen Energy Special Issue devoted to the 32nd International Conference ECOS 2019},
keywords = {2D materials, Decoration, Density Functional Theory, Germanene, Hydrogen storage, Renewable energy storage},
pubstate = {published},
tppubtype = {article}
}
© 2022 Grupo de Investigación en Nanociencias de ESIME Culhuacan | All Rights Reserved. | Hecho por Vleeko Agencia de Marketing Digital CDMX
¡Escríbenos!