Estudió la carrera de Ingeniería en Comunicaciones y Electrónica de 1999 a 2003 en la Escuela Superior de Ingeniería en Mecánica y Eléctrica (ESIME) Unidad de Culhuacán del Instituto Politécnico Nacional (IPN). Posteriormente realizo la Maestría en Ciencias de Ingeniería en Microelectrónica del 2004 al 2006 y el Doctorado en Comunicaciones y Electrónica del 2007 al 2010 en la Sección de Estudio de Posgrado e Investigación en la ESIME Culhuacán bajo la dirección del Dr. Miguel Cruz Irisson. Realizó una estancia de investigación en la Universidad Autónoma de Barcelona es España en el 2009 bajo la supervisión del Dr. Riccardo Rurali, como parte de estudios doctorales. Recibió el Premio al mejor desempeño académico del Doctorado en Comunicaciones y Electrónica en el 2008, recibió mención honorífica en su examen de grado del doctorado, así como el ganador al premio a la mejor tesis doctoral 2010 del IPN. El Dr. Miranda realizó una estancia posdoctoral en el Instituto de Ciencias de Materiales de Barcelona España, bajo la dirección del Dr. Enric Canadell del 2011 al 2013, posteriormente regresa a México a realizar una estancia posdoctoral en el Instituto de Física de la UNAM, bajo la supervisión del Dr. Luis Antonio Pérez del 2013 al 2015. En el 2015 ha seleccionado por parte del CONACYT como ganador de una beca de Retención para realizar investigación en el Instituto Politécnico Nacional, posteriormente es contratado por parte del Instituto Politécnico Nacional desde el 2016, con contrato definitivo a partir del 2020. A la fecha ha dirigido 1 tesis doctoral, 10 tesis de maestría, una de licenciatura, actualmente dirige 1 tesis doctoral, 3 tesis de maestría y 2 tesis de licenciatura. Ha publicado un total de 43 artículos científicos. Como resultado de sus estudios doctorales recibió la distinción de Investigador Nacional Nivel I, por parte del Sistema Nacional de Investigadores desde el 2012, nombramiento que tiene vigente a la fecha. Sus intereses en investigación son principalmente el estudio de las propiedades físicas y químicas de sistemas de baja dimensionalidad y sus aplicaciones en la electrónica, en particular como sensores, y en el almacenamiento de energía, tales como almacenamiento de hidrógeno y baterías.
Enlaces a perfiles académicos:
Arellano, Lucia Guadalupe; Santiago, Francisco De; Miranda, Álvaro; Pérez, Luis Antonio; Salazar, Fernando; Trejo, Alejandro; Nakamura, Jun; Cruz-Irisson, Miguel
Ab initio study of hydrogen storage on metal-decorated GeC monolayers Artículo de revista
En: International Journal of Hydrogen Energy, vol. 46, no 57, pp. 29261-29271, 2021, ISSN: 0360-3199, (HYDROGEN ENERGY SYSTEMS).
Resumen | Enlaces | BibTeX | Etiquetas: 2D materials, Alkali metals, DFT, Germanium carbide, Hydrogen storage, Renewable energy
@article{ARELLANO202129261,
title = {Ab initio study of hydrogen storage on metal-decorated GeC monolayers},
author = {Lucia Guadalupe Arellano and Francisco De Santiago and \'{A}lvaro Miranda and Luis Antonio P\'{e}rez and Fernando Salazar and Alejandro Trejo and Jun Nakamura and Miguel Cruz-Irisson},
url = {https://www.sciencedirect.com/science/article/pii/S036031992101555X},
doi = {https://doi.org/10.1016/j.ijhydene.2021.04.135},
issn = {0360-3199},
year = {2021},
date = {2021-01-01},
journal = {International Journal of Hydrogen Energy},
volume = {46},
number = {57},
pages = {29261-29271},
abstract = {Bidimensional nanostructures have been proposed as hydrogen-storage systems owing to their large surface-to-volume ratios. Germanium carbide monolayers (GeC-MLs) can offer attractive opportunities for H2 adsorption compared to graphene. However, this possibility has not been explored in detail. In this work, the adsorption of H2 molecules on GeC-MLs decorated with alkali metal (AM) and alkaline earth metal (AEM) adatoms was investigated using the density functional theory. Results showed that the AM adatoms were chemisorbed on the GeC-ML, whereas AEM adatoms were physisorbed. The H2 molecules presented negligible adsorption energies on the weakly adsorbed AEM adatoms. Conversely, the AM adatoms improved the H2 adsorption, possibly due to a large charge transfer from the adatoms to the GeC-ML. The potassium-decorated GeC-ML exhibited the most optimal H2 storage capacity, adsorbing up to six molecules and with a lower possibility of forming metal clusters than the other studied cases. These results may aid in the development of new efficient hydrogen-storage materials.},
note = {HYDROGEN ENERGY SYSTEMS},
keywords = {2D materials, Alkali metals, DFT, Germanium carbide, Hydrogen storage, Renewable energy},
pubstate = {published},
tppubtype = {article}
}
Sosa, Akari Narayama; Cid, Brandom Jhoseph; Miranda, Álvaro; Pérez, Luis Antonio; Salazar, Fernando; Trejo, Alejandro; Cruz-Irisson, Miguel
Light metal functionalized two-dimensional siligene for high capacity hydrogen storage: DFT study Artículo de revista
En: International Journal of Hydrogen Energy, vol. 46, no 57, pp. 29348-29360, 2021, ISSN: 0360-3199, (HYDROGEN ENERGY SYSTEMS).
Resumen | Enlaces | BibTeX | Etiquetas: 2D materials, Alkali metals, DFT, Hydrogen storage, Renewable energy, Siligene
@article{SOSA202129348,
title = {Light metal functionalized two-dimensional siligene for high capacity hydrogen storage: DFT study},
author = {Akari Narayama Sosa and Brandom Jhoseph Cid and \'{A}lvaro Miranda and Luis Antonio P\'{e}rez and Fernando Salazar and Alejandro Trejo and Miguel Cruz-Irisson},
url = {https://www.sciencedirect.com/science/article/pii/S0360319920340246},
doi = {https://doi.org/10.1016/j.ijhydene.2020.10.175},
issn = {0360-3199},
year = {2021},
date = {2021-01-01},
journal = {International Journal of Hydrogen Energy},
volume = {46},
number = {57},
pages = {29348-29360},
abstract = {In this work, the hydrogen storage capacities of two-dimensional siligene (2D-SiGe) functionalized with alkali metal (AM) and alkali-earth metal (AEM) atoms were studied using density functional theory calculations. One AM (Li, Na, K) or AEM (Be, Mg, Ca) atom was placed on the 2D-SiGe surface, and several H2 molecules were placed in the vicinity of the adatom. The results demonstrate that the most favorable siligene site for the adsorption of Li, Na, K and Be atoms is the hollow site, while for the Mg and Ca atoms is the down site. The AM atoms are the only ones with considerable binding energies on the SiGe nanosheets. Pristine 2D-SiGe slightly adsorbs one H2 molecule per hollow site and, therefore, it is not suitable for hydrogen storage. In some of the AM- and AEM-decorated 2D-SiGe, several hydrogen molecules can be physisorbed. In particular, the Na-, K- and Ca-functionalized 2D-SiGe can adsorb six hydrogen molecules, whereas Li and Mg atoms adsorbed three hydrogen molecules, and the Be adatom only adsorbed one hydrogen molecule. The complexes formed by hydrogen molecules adsorbed on the analyzed metal decorated 2D-SiGe are energetically stable, indicating that functionalized 2D-SiGe could be an efficient molecular hydrogen storage media.},
note = {HYDROGEN ENERGY SYSTEMS},
keywords = {2D materials, Alkali metals, DFT, Hydrogen storage, Renewable energy, Siligene},
pubstate = {published},
tppubtype = {article}
}
© 2022 Grupo de Investigación en Nanociencias de ESIME Culhuacan | All Rights Reserved. | Hecho por Vleeko Agencia de Marketing Digital CDMX
¡Escríbenos!