Estudió la carrera de Ingeniería en Comunicaciones y Electrónica de 1999 a 2003 en la Escuela Superior de Ingeniería en Mecánica y Eléctrica (ESIME) Unidad de Culhuacán del Instituto Politécnico Nacional (IPN). Posteriormente realizo la Maestría en Ciencias de Ingeniería en Microelectrónica del 2004 al 2006 y el Doctorado en Comunicaciones y Electrónica del 2007 al 2010 en la Sección de Estudio de Posgrado e Investigación en la ESIME Culhuacán bajo la dirección del Dr. Miguel Cruz Irisson. Realizó una estancia de investigación en la Universidad Autónoma de Barcelona es España en el 2009 bajo la supervisión del Dr. Riccardo Rurali, como parte de estudios doctorales. Recibió el Premio al mejor desempeño académico del Doctorado en Comunicaciones y Electrónica en el 2008, recibió mención honorífica en su examen de grado del doctorado, así como el ganador al premio a la mejor tesis doctoral 2010 del IPN. El Dr. Miranda realizó una estancia posdoctoral en el Instituto de Ciencias de Materiales de Barcelona España, bajo la dirección del Dr. Enric Canadell del 2011 al 2013, posteriormente regresa a México a realizar una estancia posdoctoral en el Instituto de Física de la UNAM, bajo la supervisión del Dr. Luis Antonio Pérez del 2013 al 2015. En el 2015 ha seleccionado por parte del CONACYT como ganador de una beca de Retención para realizar investigación en el Instituto Politécnico Nacional, posteriormente es contratado por parte del Instituto Politécnico Nacional desde el 2016, con contrato definitivo a partir del 2020. A la fecha ha dirigido 1 tesis doctoral, 10 tesis de maestría, una de licenciatura, actualmente dirige 1 tesis doctoral, 3 tesis de maestría y 2 tesis de licenciatura. Ha publicado un total de 43 artículos científicos. Como resultado de sus estudios doctorales recibió la distinción de Investigador Nacional Nivel I, por parte del Sistema Nacional de Investigadores desde el 2012, nombramiento que tiene vigente a la fecha. Sus intereses en investigación son principalmente el estudio de las propiedades físicas y químicas de sistemas de baja dimensionalidad y sus aplicaciones en la electrónica, en particular como sensores, y en el almacenamiento de energía, tales como almacenamiento de hidrógeno y baterías.
Enlaces a perfiles académicos:
Hernández-Hernández, Ivonne J.; Santiago, Francisco; Marcos-Viquez, Alma L.; Miranda, Álvaro; Cruz-Irisson, Miguel; Pérez, Luis A.
A comparative DFT study of CO and NO capture by copper- and titanium-functionalized SiC and GeC monolayers Artículo de revista
En: Materials Letters, vol. 370, pp. 136805, 2024, ISSN: 0167-577X.
Resumen | Enlaces | BibTeX | Etiquetas: Functionalized two-dimensional materials, Gas sensors, Germanium carbide, Silicon carbide, Toxic gas capture
@article{HERNANDEZHERNANDEZ2024136805,
title = {A comparative DFT study of CO and NO capture by copper- and titanium-functionalized SiC and GeC monolayers},
author = {Ivonne J. Hern\'{a}ndez-Hern\'{a}ndez and Francisco Santiago and Alma L. Marcos-Viquez and \'{A}lvaro Miranda and Miguel Cruz-Irisson and Luis A. P\'{e}rez},
url = {https://www.sciencedirect.com/science/article/pii/S0167577X24009443},
doi = {https://doi.org/10.1016/j.matlet.2024.136805},
issn = {0167-577X},
year = {2024},
date = {2024-01-01},
urldate = {2024-01-01},
journal = {Materials Letters},
volume = {370},
pages = {136805},
abstract = {In this work, the interactions of NO and CO molecules with silicon carbide (SiC) and germanium carbide (GeC) graphene-like nanosheets, functionalized with titanium and copper atoms, are comparatively studied through density-functional calculations. The results indicate that NO and CO molecules are only slightly adsorbed on the pristine carbide nanosheets. Also, the copper and titanium adatoms are chemisorbed on the monolayers, leading to stable functionalized carbide nanosheets. These adatoms greatly enhance the binding energies of CO and NO. In particular, the titanium-functionalized GeC monolayers display the highest adsorption energies for CO and NO and also the largest changes in their work functions upon molecule adsorption, indicating that they could be useful for trapping or detecting these molecules.},
keywords = {Functionalized two-dimensional materials, Gas sensors, Germanium carbide, Silicon carbide, Toxic gas capture},
pubstate = {published},
tppubtype = {article}
}
Arellano, Lucia G.; Cid, Brandom J.; Santana, José E.; Santiago, Francisco De; Miranda, Álvaro; Trejo, Alejandro; Salazar, Fernando; Pérez, Luis A.; Cruz-Irisson, Miguel
DFT investigation of metal-decorated silicon carbide nanosheets for the adsorption of NH3 Artículo de revista
En: Materials Today Communications, vol. 36, pp. 106704, 2023, ISSN: 2352-4928.
Resumen | Enlaces | BibTeX | Etiquetas: 2D materials, Ammonia, DFT, Monolayer, Sensor, Silicon carbide
@article{ARELLANO2023106704,
title = {DFT investigation of metal-decorated silicon carbide nanosheets for the adsorption of NH3},
author = {Lucia G. Arellano and Brandom J. Cid and Jos\'{e} E. Santana and Francisco De Santiago and \'{A}lvaro Miranda and Alejandro Trejo and Fernando Salazar and Luis A. P\'{e}rez and Miguel Cruz-Irisson},
url = {https://www.sciencedirect.com/science/article/pii/S2352492823013958},
doi = {https://doi.org/10.1016/j.mtcomm.2023.106704},
issn = {2352-4928},
year = {2023},
date = {2023-01-01},
journal = {Materials Today Communications},
volume = {36},
pages = {106704},
abstract = {The threat that ammonia (NH3) poses in various human activity environments drives the necessity of sensors of higher sensitivity. Two-dimensional (2D) materials have attracted attention for this particular purpose, with 2D silicon carbide being one prospect for this application. However, this potential use has been relatively unexplored. In this work, we study the adsorption of NH3 on pristine and metal (Li, Na, Mg, Ca, Ag, Au, Cu, Pd, and Ti) decorated silicon carbide monolayers (2D-SiC) using a first-principles approach based on Density-Functional Theory. Energetic analyses were performed to determine the enhancement or deterioration of the NH3 adsorption capacities of the 2D-SiC. The results show that the Ag- and Au-decorated monolayers are the best candidates for NH3 capturing due to the large adsorption energies found in these systems.},
keywords = {2D materials, Ammonia, DFT, Monolayer, Sensor, Silicon carbide},
pubstate = {published},
tppubtype = {article}
}
Arellano, Lucía G.; Santiago, Francisco; Miranda, Álvaro; Salazar, Fernando; Trejo, Alejandro; Pérez, Luis A.; Cruz-Irisson, Miguel
Hydrogen storage capacities of alkali and alkaline-earth metal atoms on SiC monolayer: A first-principles study Artículo de revista
En: International Journal of Hydrogen Energy, vol. 46, no 38, pp. 20266-20279, 2021, ISSN: 0360-3199, (International Journal of Hydrogen Energy Special Issue devoted to the 32nd International Conference ECOS 2019).
Resumen | Enlaces | BibTeX | Etiquetas: 2D monolayers, Adsorption energy, DFT, Hydrogen storage, Silicon carbide
@article{ARELLANO202120266,
title = {Hydrogen storage capacities of alkali and alkaline-earth metal atoms on SiC monolayer: A first-principles study},
author = {Luc\'{i}a G. Arellano and Francisco Santiago and \'{A}lvaro Miranda and Fernando Salazar and Alejandro Trejo and Luis A. P\'{e}rez and Miguel Cruz-Irisson},
url = {https://www.sciencedirect.com/science/article/pii/S0360319920310144},
doi = {https://doi.org/10.1016/j.ijhydene.2020.03.078},
issn = {0360-3199},
year = {2021},
date = {2021-01-01},
journal = {International Journal of Hydrogen Energy},
volume = {46},
number = {38},
pages = {20266-20279},
abstract = {A detailed theoretical Density-Functional-Theory-based investigation of hydrogen adsorption on silicon carbide monolayers (SiC-ML) decorated with alkali and alkaline-earth metal atoms is presented. The results show that the favourable position for all adsorbed metal atoms is above a Si atom. These metal atoms are chemisorbed to the SiC-ML, except for Mg which is physisorbed. The adsorbed atoms act in turn as adsorption sites for H2 molecules. The single-sided K-functionalized SiC-ML can store up to six H2 molecules. For double-side K-decorated SiC-ML, up to ten H2 molecules can be captured. In all cases, the H2 molecules are physisorbed. This is beneficial because the breaking of chemical bonds, which otherwise would be needed to make use of the stored H2, is energetically expensive. These results find decorated SiC-ML as a promising material for hydrogen storage systems.},
note = {International Journal of Hydrogen Energy Special Issue devoted to the 32nd International Conference ECOS 2019},
keywords = {2D monolayers, Adsorption energy, DFT, Hydrogen storage, Silicon carbide},
pubstate = {published},
tppubtype = {article}
}
Miranda, A.; Cuevas, J. L.; Ramos, A. E.; Cruz-Irisson, M.
Quantum confinement effects on electronic properties of hydrogenated 3C–SiC nanowires Artículo de revista
En: Microelectronics Journal, vol. 40, no 4, pp. 796-798, 2009, ISSN: 1879-2391, (European Nano Systems (ENS 2007) International Conference on Superlattices, Nanostructures and Nanodevices (ICSNN 2008)).
Resumen | Enlaces | BibTeX | Etiquetas: Density Functional Theory, Nanowires, Silicon carbide, Tight-binding
@article{MIRANDA2009796,
title = {Quantum confinement effects on electronic properties of hydrogenated 3C\textendashSiC nanowires},
author = {A. Miranda and J. L. Cuevas and A. E. Ramos and M. Cruz-Irisson},
url = {https://www.sciencedirect.com/science/article/pii/S0026269208005375},
doi = {https://doi.org/10.1016/j.mejo.2008.11.034},
issn = {1879-2391},
year = {2009},
date = {2009-01-01},
urldate = {2009-01-01},
journal = {Microelectronics Journal},
volume = {40},
number = {4},
pages = {796-798},
abstract = {In this work, the effect of the morphology on the electronic band structure and density of states of hydrogenated silicon carbide nanowires is studied by using a semiempirical sp3s* tight-binding (TB) approach applied to the supercell model, where the Si- and C-dangling bonds are passivated by hydrogen atoms. The TB results are compared with those of ab-initio density functional theory within the local density approximation, showing that this method gives systematically larger energy gaps than the TB one. As expected, hydrogen saturation induces a broadening of the band gap energy due to quantum confinement effect.},
note = {European Nano Systems (ENS 2007) International Conference on Superlattices, Nanostructures and Nanodevices (ICSNN 2008)},
keywords = {Density Functional Theory, Nanowires, Silicon carbide, Tight-binding},
pubstate = {published},
tppubtype = {article}
}
© 2022 Grupo de Investigación en Nanociencias de ESIME Culhuacan | All Rights Reserved. | Hecho por Vleeko Agencia de Marketing Digital CDMX
¡Escríbenos!