Estudió la carrera de Ingeniería en Comunicaciones y Electrónica de 1999 a 2003 en la Escuela Superior de Ingeniería en Mecánica y Eléctrica (ESIME) Unidad de Culhuacán del Instituto Politécnico Nacional (IPN). Posteriormente realizo la Maestría en Ciencias de Ingeniería en Microelectrónica del 2004 al 2006 y el Doctorado en Comunicaciones y Electrónica del 2007 al 2010 en la Sección de Estudio de Posgrado e Investigación en la ESIME Culhuacán bajo la dirección del Dr. Miguel Cruz Irisson. Realizó una estancia de investigación en la Universidad Autónoma de Barcelona es España en el 2009 bajo la supervisión del Dr. Riccardo Rurali, como parte de estudios doctorales. Recibió el Premio al mejor desempeño académico del Doctorado en Comunicaciones y Electrónica en el 2008, recibió mención honorífica en su examen de grado del doctorado, así como el ganador al premio a la mejor tesis doctoral 2010 del IPN. El Dr. Miranda realizó una estancia posdoctoral en el Instituto de Ciencias de Materiales de Barcelona España, bajo la dirección del Dr. Enric Canadell del 2011 al 2013, posteriormente regresa a México a realizar una estancia posdoctoral en el Instituto de Física de la UNAM, bajo la supervisión del Dr. Luis Antonio Pérez del 2013 al 2015. En el 2015 ha seleccionado por parte del CONACYT como ganador de una beca de Retención para realizar investigación en el Instituto Politécnico Nacional, posteriormente es contratado por parte del Instituto Politécnico Nacional desde el 2016, con contrato definitivo a partir del 2020. A la fecha ha dirigido 1 tesis doctoral, 10 tesis de maestría, una de licenciatura, actualmente dirige 1 tesis doctoral, 3 tesis de maestría y 2 tesis de licenciatura. Ha publicado un total de 43 artículos científicos. Como resultado de sus estudios doctorales recibió la distinción de Investigador Nacional Nivel I, por parte del Sistema Nacional de Investigadores desde el 2012, nombramiento que tiene vigente a la fecha. Sus intereses en investigación son principalmente el estudio de las propiedades físicas y químicas de sistemas de baja dimensionalidad y sus aplicaciones en la electrónica, en particular como sensores, y en el almacenamiento de energía, tales como almacenamiento de hidrógeno y baterías.
Enlaces a perfiles académicos:
Santana, José E.; García, Kevin J.; Santiago, Francisco De; Miranda, Álvaro; Pérez-Figueroa, Sara E.; González, José E.; Pérez, Luis A.; Cruz-Irisson, M.
Selective sensing of DNA/RNA nucleobases by metal-functionalized silicon nanowires: A DFT approach Artículo de revista
En: Surfaces and Interfaces, vol. 36, pp. 102529, 2023, ISSN: 2468-0230.
Resumen | Enlaces | BibTeX | Etiquetas: DFT, DNA, Nucleobases, RNA, Sensors, Silicon nanowires
@article{SANTANA2023102529,
title = {Selective sensing of DNA/RNA nucleobases by metal-functionalized silicon nanowires: A DFT approach},
author = {Jos\'{e} E. Santana and Kevin J. Garc\'{i}a and Francisco De Santiago and \'{A}lvaro Miranda and Sara E. P\'{e}rez-Figueroa and Jos\'{e} E. Gonz\'{a}lez and Luis A. P\'{e}rez and M. Cruz-Irisson},
url = {https://www.sciencedirect.com/science/article/pii/S246802302200788X},
doi = {https://doi.org/10.1016/j.surfin.2022.102529},
issn = {2468-0230},
year = {2023},
date = {2023-01-01},
journal = {Surfaces and Interfaces},
volume = {36},
pages = {102529},
abstract = {Ultrasensitive chemical sensors based on silicon nanowires (SiNW) are optimal for detection of biological species, since they are fast and non-invasive, their fabrication is compatible with current semiconductor technology, and silicon is a biocompatible material. SiNW-based DNA sensors are well known, but there are few studies regarding the interaction of SiNWs with the single DNA/RNA nucleobases: Guanine (G), Cytosine (C), Adenine (A), Thymine (T), and Uracil (U). This work uses Density Functional Theory to study the interaction between the single nucleobases and SiNWs decorated with Cu, Ag and Au atoms, to determine their potential use as nucleobase detectors or carriers, or even to use nucleobase-functionalized SiNWs as sensing platform for other chemical species. Numerical results show remarkable changes of the nanowire's band gap upon adsorption of nucleobases. Likewise, the adsorption energies of the nucleobases on the functionalized SiNW follow the trend C \> G \> A \> T \> U. Cu-functionalized nanowires are suitable for the electrical detection of cytosine, while Au-functionalized nanowires may detect thymine and uracil. On the other hand, large variations of the nanowire work function were found when guanine and adenine are adsorbed on Cu-functionalized nanowires.},
keywords = {DFT, DNA, Nucleobases, RNA, Sensors, Silicon nanowires},
pubstate = {published},
tppubtype = {article}
}
© 2022 Grupo de Investigación en Nanociencias de ESIME Culhuacan | All Rights Reserved. | Hecho por Vleeko Agencia de Marketing Digital CDMX
¡Escríbenos!