El Dr. Fernando Salazar Posadas es egresado del Instituto de Física “Manuel Sandoval Vallarta” de la Facultad de Ciencias de la Universidad Autónoma de San Luis Potosí. Su trabajo de investigación doctoral lo desarrolló en el Instituto de Investigaciones en Materiales de la UNAM, posteriormente realizó una estancia posdoctoral en el Instituto de Física de la UNAM. Actualmente está adscrito a la Sección de Estudios de Posgrado e Investigación de la Escuela Superior de Ingeniería Mecánica y Eléctrica, unidad Culhuacán del Instituto Politécnico Nacional. Su trabajo de investigación lo desarrolla con el Grupo de Investigación en Nanociencias, en donde se investigan las propiedades físicas y químicas de nanomateriales con modelos y simulación computacional usando la Teoría del Funcional de la Densidad. Estas investigaciones, se aplican para mejorar diferentes sistemas energéticos como las celdas fotovoltaicas, detección de moléculas tóxicas, almacenamiento de hidrógeno, almacenamiento de energía en baterías recargables. En particular, el Dr. Salazar es responsable de desarrollar el modelado teórico, simulación computacional y diseño de electrodos nanoestructurados para su aplicación en baterías recargables. Pertenece al Sistema Nacional de Investigadores del CONACyT desde 2010, es miembro de la Sociedad Mexicana de Física y de la División de Estado Sólido desde 2014. Sus actividades como docente incluyen cursos de matemáticas y física en las carreras de ingeniería y en los programas de posgrado de la ESIME Culhuacán. Ha dirigido dos tesis de licenciatura y nueve en el programa Maestría en Ciencias de Ingeniería en Sistemas Energéticos. Actualmente dirige tres tesis de licenciatura, tres tesis de maestría y una tesis de doctorado en el programa de Doctorado en Energía. En su trayectoria de investigación tiene 29 publicaciones en revistas internacionales, donde se estudian las propiedades electrónicas, mecánicas, vibracionales y de transporte electrónico y térmico de materiales nanoestructurados y sus posibles aplicaciones para mejorar sistemas energéticos. El Dr. Fernando Salazar es actualmente el coordinador del programa Doctorado en Energía de la sede ESIME-Culhuacán, cargo que le fue asignado el 16 de septiembre de 2020.
Enlaces en plataformas académicas
Santiago, F. De; González, J. E.; Miranda, A.; Trejo, A.; Salazar, F.; Pérez, L. A.; Cruz-Irisson, M.
Lithiation effects on the structural and electronic properties of Si nanowires as a potential anode material Artículo de revista
En: Energy Storage Materials, vol. 20, pp. 438-445, 2019, ISSN: 2405-8297.
Resumen | Enlaces | BibTeX | Etiquetas: electronic properties, Li batteries, Silicon nanowires, Young's modulus
@article{DESANTIAGO2019438,
title = {Lithiation effects on the structural and electronic properties of Si nanowires as a potential anode material},
author = {F. De Santiago and J. E. Gonz\'{a}lez and A. Miranda and A. Trejo and F. Salazar and L. A. P\'{e}rez and M. Cruz-Irisson},
url = {https://www.sciencedirect.com/science/article/pii/S2405829718313254},
doi = {https://doi.org/10.1016/j.ensm.2019.04.023},
issn = {2405-8297},
year = {2019},
date = {2019-01-01},
journal = {Energy Storage Materials},
volume = {20},
pages = {438-445},
abstract = {The need for better energy-storage materials has attracted much attention to the development of Li-ion battery electrodes. Si nanowires have been considered as alternative electrodes, however the effects of Li on their electronic band gap and mechanical properties have been scarcely studied. In this work, a density functional study of the electronic and mechanical properties of hydrogen passivated silicon nanowires (H-SiNWs) grown along the [001] direction is presented. The Li atoms are gradually inserted at interstitial positions or replacing surface H atoms. The results show that, for surface-lithiated H-SiNWs, the semiconducting band gap decreases when the concentration of Li atoms increases; whereas the H-SiNWs become metallic even with the addition of only one interstitial Li atom. The formation energy diminishes with the concentration of Li atoms for surface-lithiated H-SiNWs, whereas the contrary behavior is found in the interstitial-lithiated H-SiNWs. Furthermore, for the surface-lithiation case, the Li binding energy reveals the existence of SiLi bonds, whereas for the interstitial-lithiation case, the Li binding energy increases when the Li grows up to a critical concentration, where some SiSi bonds break. Finally, for the case of surface-lithiation, the Young's modulus (Y) increases with the concentration of Li, whereas for the interstitial-lithiation case, Y suffers a sudden diminution at a certain Li concentration due to the large internal mechanical stresses within the nanowire structure. These results should be considered when regarding H-SiNWs as potential electrodes in Li-ion battery anodes.},
keywords = {electronic properties, Li batteries, Silicon nanowires, Young's modulus},
pubstate = {published},
tppubtype = {article}
}
© 2022 Grupo de Investigación en Nanociencias de ESIME Culhuacan | All Rights Reserved. | Hecho por Vleeko Agencia de Marketing Digital CDMX
¡Escríbenos!