Obtuvo la Licenciatura en Física, la Maestría y el Doctorado en Ciencia e Ingeniería de Materiales en la UNAM. Es Profesor Titular C en el Instituto Politécnico Nacional en la ESIME-Culhuacan, donde formó y coordina el Grupo de Investigación en Nanociencias. Pertenece al Sistema Nacional de Investigadores (SNI)-Nivel 3, ha dirigido 16 tesis doctorales, una estancia sabática, una posdoctoral y tres estancias de investigación en el programa de retención del CONACyT, 16 tesis doctorales, 29 tesis de maestría y 11 de licenciatura, tres de las cuales han obtenido el premio a la mejor tesis de maestría y de doctorado en el IPN y un premio a la mejor tesis doctoral por parte de la UNAM. Ha publicado 121 artículos en revistas internacionales indizadas en el Journal Citation Reports con un alto factor de impacto, así como 37 artículos in extenso como memorias de congresos. Sus trabajos de investigación se han presentado en más de 250 congresos nacionales e internacionales de reconocida calidad académica. Se ha desempeñado como revisor en revistas internacionales como Applied Surface Science, Nanoscale, Physica E, Physica B, Physica Status Solidi (b) así como el Journal of Energy Storage por citar algunas. Adicionalmente ha sido Responsable Técnico de proyectos financiados por el CONACyT, el ICyTDF y el IPN, además ha coordinado varios proyectos multidisciplinarios en el IPN. Fue Presidente de la División de Estado Sólido de la Sociedad Mexicana de Física. Pertenece a la Academia Mexicana de Ciencias. En su trayectoria docente en el IPN, participó en la creación de la carrera de Ingeniería en Computación, así como la Maestría en Ciencias de Ingeniería en Sistemas Energéticoas y fue Coordinador del Doctorado en Comunicaciones y Electrónica a este último se le otorgó la categoría de programa de Competencia Internacional como resultad ode la evaluación en el Programa Nacional de Posgrados de Calidad (PNPC) del CONACyT. Una de sus líneas de investigación son las propiedades electrónicas, ópticas y vibracionales de semiconductores nanoestructurados con aplicaciones en comunicaciones y electrónica, así como en el almacenamiento y conversión de energía.
Jiménez-Sánchez, Ricardo; Morales-Vergara, Pedro; Heredia, Alma R.; Rebollo-Paz, Jacqueline; Miranda, Álvaro; Trejo, Alejandro; Salazar, Fernando; Pérez, Luis Antonio; Cruz-Irisson, Miguel
DFT insight into the structural, vibrational, and electronic properties of thin [110] Ge nanowires as anodic material for Li batteries Artículo de revista
En: Materials Today Communications, vol. 41, pp. 110526, 2024, ISSN: 2352-4928.
Resumen | Enlaces | BibTeX | Etiquetas: Anodic materials, Density Functional Theory, Ge nanowires, Li batteries
@article{JIMENEZSANCHEZ2024110526,
title = {DFT insight into the structural, vibrational, and electronic properties of thin [110] Ge nanowires as anodic material for Li batteries},
author = {Ricardo Jim\'{e}nez-S\'{a}nchez and Pedro Morales-Vergara and Alma R. Heredia and Jacqueline Rebollo-Paz and \'{A}lvaro Miranda and Alejandro Trejo and Fernando Salazar and Luis Antonio P\'{e}rez and Miguel Cruz-Irisson},
url = {https://www.sciencedirect.com/science/article/pii/S2352492824025078},
doi = {https://doi.org/10.1016/j.mtcomm.2024.110526},
issn = {2352-4928},
year = {2024},
date = {2024-01-01},
urldate = {2024-01-01},
journal = {Materials Today Communications},
volume = {41},
pages = {110526},
abstract = {Germanium nanowires could be used to improve as anodic materials since their charge rate is better than that of the current graphite electrodes. In this work, we present a Density Functional Theory study of the effect of interstitial Li atoms on the vibrational, electronic, and mechanical properties of ultrathin hydrogen-passivated Ge nanowires (HGeNWs) with diamond structure, grown along the [110] crystallographic direction, and with a diameter of ∼14.4 r{A}. The interstitial Li atoms were placed at the tetrahedral positions (Td) reported as the more favorable ones. The phonon band structure of the HGeNWs reveals the existence of high frequency vibrations due to the hydrogen atoms at the nanowire surface. The effect of one interstitial Li atom in the nanowire leads to the apparition of three flat phonon bands almost independent of the collective vibrational states of the nanowire, reflecting a weak interaction between the Li atom and the neighboring ones; and a shift of the high vibrational modes to lower frequencies that results in more dispersive states. The electronic band structure confirms a transition from semiconducting to metallic behavior by adding a single Li interstitial atom per unit cell. The formation energies indicate that the nanowires with interstitial Li atoms are stable, and the average binding energy per Li atom slightly increases as a function of the concentration of Li atoms. The insertion of Li atoms in the nanowire leads to a volumetric expansion, without fracture or broken bonds. Even more, the redistribution of the electronic charge due to the Li atoms give the Ge-Ge bonds more axial elasticity and the values of the modulus of Young are almost constant for all studied concentrations of Li atoms. These theoretical results indicate an improvement of mechanical and electronic properties of Ge nanowires through the addition of interstitial Li atoms that could be important for their use as anodes in rechargeable Li batteries.},
keywords = {Anodic materials, Density Functional Theory, Ge nanowires, Li batteries},
pubstate = {published},
tppubtype = {article}
}
© 2022 Grupo de Investigación en Nanociencias de ESIME Culhuacan | All Rights Reserved. | Hecho por Vleeko Agencia de Marketing Digital CDMX
¡Escríbenos!