Obtuvo la Licenciatura en Física, la Maestría y el Doctorado en Ciencia e Ingeniería de Materiales en la UNAM. Es Profesor Titular C en el Instituto Politécnico Nacional en la ESIME-Culhuacan, donde formó y coordina el Grupo de Investigación en Nanociencias. Pertenece al Sistema Nacional de Investigadores (SNI)-Nivel 3, ha dirigido 16 tesis doctorales, una estancia sabática, una posdoctoral y tres estancias de investigación en el programa de retención del CONACyT, 16 tesis doctorales, 29 tesis de maestría y 11 de licenciatura, tres de las cuales han obtenido el premio a la mejor tesis de maestría y de doctorado en el IPN y un premio a la mejor tesis doctoral por parte de la UNAM. Ha publicado 121 artículos en revistas internacionales indizadas en el Journal Citation Reports con un alto factor de impacto, así como 37 artículos in extenso como memorias de congresos. Sus trabajos de investigación se han presentado en más de 250 congresos nacionales e internacionales de reconocida calidad académica. Se ha desempeñado como revisor en revistas internacionales como Applied Surface Science, Nanoscale, Physica E, Physica B, Physica Status Solidi (b) así como el Journal of Energy Storage por citar algunas. Adicionalmente ha sido Responsable Técnico de proyectos financiados por el CONACyT, el ICyTDF y el IPN, además ha coordinado varios proyectos multidisciplinarios en el IPN. Fue Presidente de la División de Estado Sólido de la Sociedad Mexicana de Física. Pertenece a la Academia Mexicana de Ciencias. En su trayectoria docente en el IPN, participó en la creación de la carrera de Ingeniería en Computación, así como la Maestría en Ciencias de Ingeniería en Sistemas Energéticoas y fue Coordinador del Doctorado en Comunicaciones y Electrónica a este último se le otorgó la categoría de programa de Competencia Internacional como resultad ode la evaluación en el Programa Nacional de Posgrados de Calidad (PNPC) del CONACyT. Una de sus líneas de investigación son las propiedades electrónicas, ópticas y vibracionales de semiconductores nanoestructurados con aplicaciones en comunicaciones y electrónica, así como en el almacenamiento y conversión de energía.
Arellano, Lucia Guadalupe; Salazar, Fernando; Miranda, Álvaro; Trejo, Alejandro; Pérez, Luis Antonio; Nakamura, Jun; Cruz-Irisson, Miguel
Tunable electronic properties of silicon nanowires as sodium-battery anodes Artículo de revista
En: International Journal of Energy Research, vol. 46, no 12, pp. 17151-17162, 2022.
Resumen | Enlaces | BibTeX | Etiquetas: DFT, Silicon nanowires, sodium-ion batteries
@article{https://doi.org/10.1002/er.8378,
title = {Tunable electronic properties of silicon nanowires as sodium-battery anodes},
author = {Lucia Guadalupe Arellano and Fernando Salazar and \'{A}lvaro Miranda and Alejandro Trejo and Luis Antonio P\'{e}rez and Jun Nakamura and Miguel Cruz-Irisson},
url = {https://onlinelibrary.wiley.com/doi/abs/10.1002/er.8378},
doi = {https://doi.org/10.1002/er.8378},
year = {2022},
date = {2022-01-01},
journal = {International Journal of Energy Research},
volume = {46},
number = {12},
pages = {17151-17162},
abstract = {Summary Although materials for lithium-ion batteries have been extensively studied, alternatives such as sodium-ion batteries have acquired a renewed interest due to the abundance of Na compared to Li. However, the investigation of new materials for Na battery anodes is still in progress. In this work, a density functional study of the electronic properties of hydrogen passivated silicon nanowires (H-SiNWs) with interstitial Na atoms is presented. The studied H-SiNWs are grown along the [001] crystallographic direction and have a diameter close to 2.5 nm. Moreover, from 1 to 12 interstitial Na atoms per H-SiNW unit cell were considered. The results reveal that the former semiconducting nanowires become metallic for all the Na concentrations, even for the case of a single Na atom. The formation energy diminishes as a function of the concentration of Na atoms, revealing a loss of energetic stability since the size of the Na atoms strongly modify the Si-Si bonds. Moreover, when the Na atoms are removed from the metallic sodiated H-SiNW and relaxed again, for concentrations between 1 and 8 Na atoms, the resulting structure corresponds to the original H-SiNW one, indicating that the Na insertion/extraction process is a reversible one. In contrast, for concentrations between 10 and 12 Na atoms, the structure that results from removing of these Na atoms has a different atomic arrangement, in comparison with the initial H-SiNW, and also smaller band gap. These results open the possibility to consider the H-SiNWs as potential anodic materials in sodium rechargeable batteries.},
keywords = {DFT, Silicon nanowires, sodium-ion batteries},
pubstate = {published},
tppubtype = {article}
}
© 2022 Grupo de Investigación en Nanociencias de ESIME Culhuacan | All Rights Reserved. | Hecho por Vleeko Agencia de Marketing Digital CDMX
¡Escríbenos!