Obtuvo la Licenciatura en Física, la Maestría y el Doctorado en Ciencia e Ingeniería de Materiales en la UNAM. Es Profesor Titular C en el Instituto Politécnico Nacional en la ESIME-Culhuacan, donde formó y coordina el Grupo de Investigación en Nanociencias. Pertenece al Sistema Nacional de Investigadores (SNI)-Nivel 3, ha dirigido 16 tesis doctorales, una estancia sabática, una posdoctoral y tres estancias de investigación en el programa de retención del CONACyT, 16 tesis doctorales, 29 tesis de maestría y 11 de licenciatura, tres de las cuales han obtenido el premio a la mejor tesis de maestría y de doctorado en el IPN y un premio a la mejor tesis doctoral por parte de la UNAM. Ha publicado 121 artículos en revistas internacionales indizadas en el Journal Citation Reports con un alto factor de impacto, así como 37 artículos in extenso como memorias de congresos. Sus trabajos de investigación se han presentado en más de 250 congresos nacionales e internacionales de reconocida calidad académica. Se ha desempeñado como revisor en revistas internacionales como Applied Surface Science, Nanoscale, Physica E, Physica B, Physica Status Solidi (b) así como el Journal of Energy Storage por citar algunas. Adicionalmente ha sido Responsable Técnico de proyectos financiados por el CONACyT, el ICyTDF y el IPN, además ha coordinado varios proyectos multidisciplinarios en el IPN. Fue Presidente de la División de Estado Sólido de la Sociedad Mexicana de Física. Pertenece a la Academia Mexicana de Ciencias. En su trayectoria docente en el IPN, participó en la creación de la carrera de Ingeniería en Computación, así como la Maestría en Ciencias de Ingeniería en Sistemas Energéticoas y fue Coordinador del Doctorado en Comunicaciones y Electrónica a este último se le otorgó la categoría de programa de Competencia Internacional como resultad ode la evaluación en el Programa Nacional de Posgrados de Calidad (PNPC) del CONACyT. Una de sus líneas de investigación son las propiedades electrónicas, ópticas y vibracionales de semiconductores nanoestructurados con aplicaciones en comunicaciones y electrónica, así como en el almacenamiento y conversión de energía.
Santana, José E.; García, Kevin J.; Hernández-Hernández, Ivonne J.; Miranda, Álvaro; Cruz-Irisson, Miguel; Pérez, Luis A.
Urea adsorption and detection using silicon nanowires doped with B, Al, C, Ge, N, and P: A DFT investigation Artículo de revista
En: Physica B: Condensed Matter, vol. 691, pp. 416332, 2024, ISSN: 0921-4526.
Resumen | Enlaces | BibTeX | Etiquetas: Biosensor, Density Functional Theory, Sensing, Silicon nanowires, Urea
@article{SANTANA2024416332,
title = {Urea adsorption and detection using silicon nanowires doped with B, Al, C, Ge, N, and P: A DFT investigation},
author = {Jos\'{e} E. Santana and Kevin J. Garc\'{i}a and Ivonne J. Hern\'{a}ndez-Hern\'{a}ndez and \'{A}lvaro Miranda and Miguel Cruz-Irisson and Luis A. P\'{e}rez},
url = {https://www.sciencedirect.com/science/article/pii/S0921452624006732},
doi = {https://doi.org/10.1016/j.physb.2024.416332},
issn = {0921-4526},
year = {2024},
date = {2024-01-01},
urldate = {2024-01-01},
journal = {Physica B: Condensed Matter},
volume = {691},
pages = {416332},
abstract = {Urea can serve as a biomarker for the detection of various illnesses, including renal and hepatic failure. Consequently, the development of novel devices and materials capable of adsorbing and identifying urea is a crucial objective for the scientific community. This study theoretically investigates the adsorption and detection capabilities of doped silicon nanowires (SiNWs) for urea using Density Functional Theory (DFT). Doping involves substituting a silicon atom on the surface with a dopant atom; B, Al, C, Ge, N, and P were employed for this purpose. This study presents an innovative method for enhancing urea adsorption and detection by doping SiNWs with group XIII elements, specifically aluminum and boron atoms. The results indicate that this doping significantly improves urea adsorption on SiNWs compared to undoped SiNWs. Notable changes in the bandgaps and work functions of the doped nanowires following urea adsorption suggest their potential use as diagnostic tools for uremia.},
keywords = {Biosensor, Density Functional Theory, Sensing, Silicon nanowires, Urea},
pubstate = {published},
tppubtype = {article}
}
Santana, José E.; García, Kevin J.; Hernández-Hernández, Ivonne J.; Miranda, Álvaro; Cruz-Irisson, Miguel; Pérez, Luis A.
Urea adsorption and detection using silicon nanowires doped with B, Al, C, Ge, N, and P: A DFT investigation Artículo de revista
En: Physica B: Condensed Matter, vol. 691, pp. 416332, 2024, ISSN: 0921-4526.
Resumen | Enlaces | BibTeX | Etiquetas: Biosensor, Density Functional Theory, Sensing, Silicon nanowires, Urea
@article{SANTANA2024416332b,
title = {Urea adsorption and detection using silicon nanowires doped with B, Al, C, Ge, N, and P: A DFT investigation},
author = {Jos\'{e} E. Santana and Kevin J. Garc\'{i}a and Ivonne J. Hern\'{a}ndez-Hern\'{a}ndez and \'{A}lvaro Miranda and Miguel Cruz-Irisson and Luis A. P\'{e}rez},
url = {https://www.sciencedirect.com/science/article/pii/S0921452624006732},
doi = {https://doi.org/10.1016/j.physb.2024.416332},
issn = {0921-4526},
year = {2024},
date = {2024-01-01},
urldate = {2024-01-01},
journal = {Physica B: Condensed Matter},
volume = {691},
pages = {416332},
abstract = {Urea can serve as a biomarker for the detection of various illnesses, including renal and hepatic failure. Consequently, the development of novel devices and materials capable of adsorbing and identifying urea is a crucial objective for the scientific community. This study theoretically investigates the adsorption and detection capabilities of doped silicon nanowires (SiNWs) for urea using Density Functional Theory (DFT). Doping involves substituting a silicon atom on the surface with a dopant atom; B, Al, C, Ge, N, and P were employed for this purpose. This study presents an innovative method for enhancing urea adsorption and detection by doping SiNWs with group XIII elements, specifically aluminum and boron atoms. The results indicate that this doping significantly improves urea adsorption on SiNWs compared to undoped SiNWs. Notable changes in the bandgaps and work functions of the doped nanowires following urea adsorption suggest their potential use as diagnostic tools for uremia.},
keywords = {Biosensor, Density Functional Theory, Sensing, Silicon nanowires, Urea},
pubstate = {published},
tppubtype = {article}
}
Cid, Brandom J.; Santana, José E.; Arellano, Lucia G.; Miranda, Álvaro; Pérez-Figueroa, Sara E.; Iturrios, María I.; Pérez, Luis A.; Cruz-Irisson, Miguel
Metal-decorated siligene as work function type sensor for NH3 detection: A DFT approach Artículo de revista
En: Applied Surface Science, vol. 610, pp. 155541, 2023, ISSN: 0169-4332.
Resumen | Enlaces | BibTeX | Etiquetas: 2D SiGe, Ammonia, DFT, Monolayers, Sensing, Work function
@article{CID2023155541,
title = {Metal-decorated siligene as work function type sensor for NH3 detection: A DFT approach},
author = {Brandom J. Cid and Jos\'{e} E. Santana and Lucia G. Arellano and \'{A}lvaro Miranda and Sara E. P\'{e}rez-Figueroa and Mar\'{i}a I. Iturrios and Luis A. P\'{e}rez and Miguel Cruz-Irisson},
url = {https://www.sciencedirect.com/science/article/pii/S0169433222030690},
doi = {https://doi.org/10.1016/j.apsusc.2022.155541},
issn = {0169-4332},
year = {2023},
date = {2023-01-01},
journal = {Applied Surface Science},
volume = {610},
pages = {155541},
abstract = {In this work, we employed density functional theory calculations to investigate the feasibility of X-decorated (X = Li, Na, K, Mg, Ca, Sc, Ti, and Pd) two-dimensional siligene (2D SiGe) for ammonia (NH3) sensing through variations of its work function. The results indicated that NH3 molecule is physisorbed on pristine 2D SiGe. Moreover, Li, Na, K, Sc, Ti, Pd and Ca atoms are chemisorbed on the 2D SiGe, while Mg is barely adsorbed. Likewise, NH3 tends to be adsorbed on the metal atoms of the decorated 2D SiGe with adsorption energies between −0.13 eV and−1.47 eV. The changes observed in the work functions of Na-, Mg-, Ca-, Sc-, and Pd-decorated 2D SiGe upon NH3 may allow its detection. Moreover, the results indicate that only the recovery times of 2D SiGe decorate with Na, K, Ca and Pd atoms could allow for their use as reusable sensors of NH3, while 2D SiGe decorated with Li, Mg, Sc and Ti could be used to trap NH3. From the results of work functions and recovery times on metal decorated 2D SiGe, it is concluded that Pd, Ca, and Na-decorated 2D SiGe are the most suitable material for sensing NH3 molecules.},
keywords = {2D SiGe, Ammonia, DFT, Monolayers, Sensing, Work function},
pubstate = {published},
tppubtype = {article}
}
Sosa, Akari N.; Santana, José E.; Miranda, Álvaro; Pérez, Luis A.; Rurali, Riccardo; Cruz-Irisson, Miguel
Transition metal-decorated germanene for NO, N2 and O2 sensing: A DFT study Artículo de revista
En: Surfaces and Interfaces, vol. 30, pp. 101886, 2022, ISSN: 2468-0230.
Resumen | Enlaces | BibTeX | Etiquetas: DFT, Germanene, metal-decoration, nitrogen monoxide, Sensing
@article{SOSA2022101886,
title = {Transition metal-decorated germanene for NO, N2 and O2 sensing: A DFT study},
author = {Akari N. Sosa and Jos\'{e} E. Santana and \'{A}lvaro Miranda and Luis A. P\'{e}rez and Riccardo Rurali and Miguel Cruz-Irisson},
url = {https://www.sciencedirect.com/science/article/pii/S2468023022001651},
doi = {https://doi.org/10.1016/j.surfin.2022.101886},
issn = {2468-0230},
year = {2022},
date = {2022-01-01},
journal = {Surfaces and Interfaces},
volume = {30},
pages = {101886},
abstract = {Detecting hazardous and toxic gasses is important to avoid harmful effects on human health and two-dimensional nanostructures have emerged as candidate materials for sensing or scavenging gasses. The chemical interactions between NO, O2, and N2 gas molecules and Cu-, Ag-, and Au-decorated germanene were investigated by using density functional theory simulations, and the potential applications as gas sensors or scavengers were addressed. Except for O2, the studied molecules were physisorbed on pristine germanene, where the most favorable adsorption site is located at the middle of the lattice hexagon, with adsorption energy values ranging from 0.09 eV for the N2 to 0.49 eV for NO adsorbed through the N atom. The results also show that the studied molecules have larger adsorption energies in Cu-, Ag-, and Au-decorated germanene, with energy values of 0.4 eV for the N2 molecule and 1.04 eV for the NO molecule. Therefore, molecule-metal-germanene complexes are more energetically favorable than the molecule-germanene ones and are thus predicted to have an enhanced sensing capability. The larger NO adsorption energies on Ag- (0.8 eV) and Au- (0.87 eV) decorated germanene, in comparison with those of N2 (around 0.1 eV) and O2 (around 0.37 eV), indicate their good selectivity towards NO. To estimate their potential application as NO sensors in gas-insulated switchgear, we calculated the work function and desorption time of the studied molecules adsorbed on Cu-, Ag-, and Au-decorated germanene, obtaining considerable changes in the work function (around 0.5 eV) between the different molecules adsorbed on Cu-decorated germanene, and recovery times of the order of seconds at a temperature of 400 K. The results suggest that metal-germanene complexes are stable in ambient conditions and they are good candidates for sensing and scavenging nitrogen monoxide.},
keywords = {DFT, Germanene, metal-decoration, nitrogen monoxide, Sensing},
pubstate = {published},
tppubtype = {article}
}
Santiago, Francisco; Santana, José Eduardo; Miranda, Álvaro; Trejo, Alejandro; Vázquez-Medina, Rubén; Pérez, Luis Antonio; Cruz-Irisson, Miguel
Quasi-one-dimensional silicon nanostructures for gas molecule adsorption: a DFT investigation Artículo de revista
En: Applied Surface Science, vol. 475, pp. 278-284, 2019, ISSN: 0169-4332.
Resumen | Enlaces | BibTeX | Etiquetas: Chemical sensors, Density Functional Theory, Molecule adsorption, porous silicon, Sensing, Silicon nanowires
@article{DESANTIAGO2019278,
title = {Quasi-one-dimensional silicon nanostructures for gas molecule adsorption: a DFT investigation},
author = {Francisco Santiago and Jos\'{e} Eduardo Santana and \'{A}lvaro Miranda and Alejandro Trejo and Rub\'{e}n V\'{a}zquez-Medina and Luis Antonio P\'{e}rez and Miguel Cruz-Irisson},
url = {https://www.sciencedirect.com/science/article/pii/S0169433218336109},
doi = {https://doi.org/10.1016/j.apsusc.2018.12.258},
issn = {0169-4332},
year = {2019},
date = {2019-01-01},
journal = {Applied Surface Science},
volume = {475},
pages = {278-284},
abstract = {Porous structures offer an enormous surface suitable for gas sensing, however, the effects of their quantum quasi-confinement on their molecular sensing capacities has been seldom studied. In this work the gas-sensing capability of silicon nanopores is investigated by comparing it to silicon nanowires using first principles calculations. In particular, the adsorption of toxic gas molecules CO, NO, SO2 and NO2 on both silicon nanopores and nanowires with the same cross sections was studied. Results show that sensing-related properties of silicon nanopores and nanowires are very similar, suggesting that surface effects are predominant over the confinement. However, there are certain cases where there are remarked differences between the nanowire and porous cases, for instance, CO-adsorbed nanoporous silicon shows a metallic band structure unlike its nanowire counterpart, which remains semiconducting, suggesting that quantum quasi-confinement may be playing an important role in this behaviour. These results are significant in the study of the quantum phenomena behind the adsorption of gas molecules on nanostructure’s surfaces, with possible applications in chemical detectors or catalysts.},
keywords = {Chemical sensors, Density Functional Theory, Molecule adsorption, porous silicon, Sensing, Silicon nanowires},
pubstate = {published},
tppubtype = {article}
}
© 2022 Grupo de Investigación en Nanociencias de ESIME Culhuacan | All Rights Reserved. | Hecho por Vleeko Agencia de Marketing Digital CDMX
¡Escríbenos!