Obtuvo la Licenciatura en Física, la Maestría y el Doctorado en Ciencia e Ingeniería de Materiales en la UNAM. Es Profesor Titular C en el Instituto Politécnico Nacional en la ESIME-Culhuacan, donde formó y coordina el Grupo de Investigación en Nanociencias. Pertenece al Sistema Nacional de Investigadores (SNI)-Nivel 3, ha dirigido 16 tesis doctorales, una estancia sabática, una posdoctoral y tres estancias de investigación en el programa de retención del CONACyT, 16 tesis doctorales, 29 tesis de maestría y 11 de licenciatura, tres de las cuales han obtenido el premio a la mejor tesis de maestría y de doctorado en el IPN y un premio a la mejor tesis doctoral por parte de la UNAM. Ha publicado 121 artículos en revistas internacionales indizadas en el Journal Citation Reports con un alto factor de impacto, así como 37 artículos in extenso como memorias de congresos. Sus trabajos de investigación se han presentado en más de 250 congresos nacionales e internacionales de reconocida calidad académica. Se ha desempeñado como revisor en revistas internacionales como Applied Surface Science, Nanoscale, Physica E, Physica B, Physica Status Solidi (b) así como el Journal of Energy Storage por citar algunas. Adicionalmente ha sido Responsable Técnico de proyectos financiados por el CONACyT, el ICyTDF y el IPN, además ha coordinado varios proyectos multidisciplinarios en el IPN. Fue Presidente de la División de Estado Sólido de la Sociedad Mexicana de Física. Pertenece a la Academia Mexicana de Ciencias. En su trayectoria docente en el IPN, participó en la creación de la carrera de Ingeniería en Computación, así como la Maestría en Ciencias de Ingeniería en Sistemas Energéticoas y fue Coordinador del Doctorado en Comunicaciones y Electrónica a este último se le otorgó la categoría de programa de Competencia Internacional como resultad ode la evaluación en el Programa Nacional de Posgrados de Calidad (PNPC) del CONACyT. Una de sus líneas de investigación son las propiedades electrónicas, ópticas y vibracionales de semiconductores nanoestructurados con aplicaciones en comunicaciones y electrónica, así como en el almacenamiento y conversión de energía.
Trejo, A.; Miranda, A.; Rivera, L. Niño; Díaz-Méndez, A.; Cruz-Irisson, M.
Phonon optical modes and electronic properties in diamond nanowires Artículo de revista
En: Microelectronic Engineering, vol. 90, pp. 92-95, 2012, ISSN: 0167-9317, (Micro&Nano 2010).
Resumen | Enlaces | BibTeX | Etiquetas: Diamond, Nanowires, Phonons, Raman scattering, Tight-binding
@article{TREJO201292,
title = {Phonon optical modes and electronic properties in diamond nanowires},
author = {A. Trejo and A. Miranda and L. Ni\~{n}o Rivera and A. D\'{i}az-M\'{e}ndez and M. Cruz-Irisson},
url = {https://www.sciencedirect.com/science/article/pii/S016793171100476X},
doi = {https://doi.org/10.1016/j.mee.2011.04.052},
issn = {0167-9317},
year = {2012},
date = {2012-01-01},
journal = {Microelectronic Engineering},
volume = {90},
pages = {92-95},
abstract = {A local bond-polarization model based on the displacement\textendashdisplacement Green’s function and the Born potential are applied to study the confined optical phonons and Raman scattering of diamond nanowires (DNWs). Also, the electronic band structure of DNWs are investigated by means of a semi-empirical tight-binding approach and compared with density functional theory within local density approximation. The supercell technique is applied to model DNWs along [001] direction preserving the crystalline diamond atomic structure. The results of both phonons and electrons show a clear quantum confinement signature. Moreover, the highest energy Raman peak shows a shift towards low frequencies respect to the bulk crystalline diamond, in agreement with experimental data.},
note = {Micro\&Nano 2010},
keywords = {Diamond, Nanowires, Phonons, Raman scattering, Tight-binding},
pubstate = {published},
tppubtype = {article}
}
Cruz-Irisson, Miguel; Wang, Chu Min
Electronic and Vibrational Properties of Porous Silicon Artículo de revista
En: Journal of Nano Research, vol. 5, pp. 153–160, 2009.
Resumen | Enlaces | BibTeX | Etiquetas: Porous Silicon (PS), Raman scattering, Tight Binding
@article{cruz-irisson2009,
title = {Electronic and Vibrational Properties of Porous Silicon},
author = {Miguel Cruz-Irisson and Chu Min Wang},
doi = {10.4028/www.scientific.net/JNanoR.5.153},
year = {2009},
date = {2009-01-01},
urldate = {2009-01-01},
journal = {Journal of Nano Research},
volume = {5},
pages = {153\textendash160},
abstract = {For ordered porous silicon, the Born potential and phonon Green’s functions are used to investigate its Raman response, while the electronic band structure and dielectric function are studied by means of a sp3s* tight-binding supercell model, in which periodical pores are produced by removing columns of atoms along [001] direction from a crystalline Si structure and the pores surfaces are passivated by hydrogen atoms for the electronic band structure calculations. This supercell model emphasizes the interconnection between silicon nanocrystals, delocalizing the electronic and phononic states. However, the results of both elementary excitations show a clear quantum confinement signature, which is contrasted with that of nanowire systems. In addition, ab-initio calculations of small supercells are performed in order to verify the tight-binding results. The calculated dielectric function is compared with experimental data. Finally, a shift of the highest-frequency Raman peak towards lower energy is observed, in agreement with the experimental data.},
keywords = {Porous Silicon (PS), Raman scattering, Tight Binding},
pubstate = {published},
tppubtype = {article}
}
© 2022 Grupo de Investigación en Nanociencias de ESIME Culhuacan | All Rights Reserved. | Hecho por Vleeko Agencia de Marketing Digital CDMX
¡Escríbenos!