2023
Gonzalez, Mario; Salazar, Fernando; Trejo, Alejandro; Miranda, Álvaro; Nava, Rocío; Pérez, Luis Antonio; Cruz-Irisson, Miguel
Exploring the electronic and mechanical properties of lithium-decorated silicon carbide nanowires for energy storage Artículo de revista
En: Journal of Energy Storage, vol. 62, pp. 106840, 2023, ISSN: 2352-152X.
Resumen | Enlaces | BibTeX | Etiquetas: Anodes, Density Functional Theory, Lithium ion batteries, SiC nanowires
@article{GONZALEZ2023106840,
title = {Exploring the electronic and mechanical properties of lithium-decorated silicon carbide nanowires for energy storage},
author = {Mario Gonzalez and Fernando Salazar and Alejandro Trejo and \'{A}lvaro Miranda and Roc\'{i}o Nava and Luis Antonio P\'{e}rez and Miguel Cruz-Irisson},
url = {https://www.sciencedirect.com/science/article/pii/S2352152X23002372},
doi = {https://doi.org/10.1016/j.est.2023.106840},
issn = {2352-152X},
year = {2023},
date = {2023-01-01},
journal = {Journal of Energy Storage},
volume = {62},
pages = {106840},
abstract = {The high chemical stability of silicon carbide (SiC) is attractive to inhibit unwanted side chemical reaction and prolongate the cyclability performance of lithium ion batteries anodes. However, SiC has high surface lithiation energy barrier due to its intrinsic nature and the low electrical conductivity limited the application in this area. The surface modification of SiC is an alternative to boost the lithiation\textendashdelithiation kinetics. Hydrogen incorporation on SiC surface is extensively used in semiconductor industry to passivate electrically active centers. In this work, we present a theoretical study of the effect of surface lithium (Li) atoms on the electronic and mechanical properties of hydrogen passivated SiC nanowires (H-SiCNWs) with zinc-blende structure. The results show that the adsorption of Li on the carbon (C) atoms at the surface of the nanowire introduces new electronic states within the former band gap of the H-SiCNWs, whose main contribution comes from the C and silicon (Si) atoms in the valence and conduction bands, respectively. Moreover, the number of new bands within the former band gap increases as a function of the concentration of Li atoms and the systems remain as intrinsic semiconductors up to the maximum Li concentrations. The formation energy reveals that the stability of the nanowires increases when the concentration of Li atoms augments. Moreover, the values of the open circuit voltage are found between 1.6 and 1.9 V for all studied concentrations of Li atoms and morphologies. The charge population analysis indicates that the Li atoms give up charge to the C ones resulting in ionic bonds. On the other hand, the Young modulus of the H-SiCNWs increases when their diameter augments and their values are lower than that of the bulk SiC. Besides, the Young modulus slightly diminishes when the concentration of Li grows, then the mechanical resistance could offer a large useful life of the electrode. Finally, the maximum theoretical storage capacity values indicate that the SiC nanowires (SiCNWs) are good potential anodic materials for rechargeable Li-ion batteries.},
keywords = {Anodes, Density Functional Theory, Lithium ion batteries, SiC nanowires},
pubstate = {published},
tppubtype = {article}
}
2018
Cuevas, José Luis; Santiago, Francisco; Ramírez, Jesús; Trejo, Alejandro; Miranda, Álvaro; Pérez, Luis Antonio; Cruz-Irisson, Miguel
First principles band gap engineering of [1 1 0] oriented 3C-SiC nanowires Artículo de revista
En: Computational Materials Science, vol. 142, pp. 268-276, 2018, ISSN: 0927-0256.
Resumen | Enlaces | BibTeX | Etiquetas: DFT, Formation energy, SiC nanowires, Surface passivation
@article{CUEVAS2018268,
title = {First principles band gap engineering of [1 1 0] oriented 3C-SiC nanowires},
author = {Jos\'{e} Luis Cuevas and Francisco Santiago and Jes\'{u}s Ram\'{i}rez and Alejandro Trejo and \'{A}lvaro Miranda and Luis Antonio P\'{e}rez and Miguel Cruz-Irisson},
url = {https://www.sciencedirect.com/science/article/pii/S0927025617305712},
doi = {https://doi.org/10.1016/j.commatsci.2017.10.021},
issn = {0927-0256},
year = {2018},
date = {2018-01-01},
journal = {Computational Materials Science},
volume = {142},
pages = {268-276},
abstract = {Silicon carbide nanowires offer excellent opportunities for technological applications under harsh environmental conditions, however, the 3C-SiC polytype nanowires, grown along the [1 1 0] crystallographic direction, have been rarely studied, as well as the effects of the surface passivation on their physical properties. This work addresses the effects of hydrogen passivation on the electronic band gap of silicon carbide nanowires (SiCNWs) grown along the [1 1 0] direction by means of Density Functional Theory. We compare the electronic properties of fully hydrogen-passivated SiCNWs in comparison to those of SiCNWs with a mixed passivation of oxygen and hydrogen by changing some of the surface dihydrides with SiOSi or COC bonds. The results show that regardless of the diameter and passivation, most of the nanowires have a direct band gap which suggests an increased optical activity. The surface COC bonds reduce the electronic band gap energy compared to that of the fully H-terminated phase, while the nanowires with SiOSi bonds have a larger band gap. The calculation of formation energies shows that the oxygen increases the chemical stability of the SiCNWs. These results indicate the possibility of band gap engineering on SiC nanostructures through surface passivation.},
keywords = {DFT, Formation energy, SiC nanowires, Surface passivation},
pubstate = {published},
tppubtype = {article}
}