2025
Cid, Brandom J.; Santana, José E.; Miranda, Álvaro; Trejo, Alejandro; Salazar, Fernando; Pérez, Luis A.; Rurali, Riccardo; Cruz-Irisson, Miguel
Doped diamond nanowires for NO and NO2 adsorption and sensing: A DFT investigation Artículo de revista
En: Diamond and Related Materials, vol. 154, pp. 112251, 2025, ISSN: 0925-9635.
Resumen | Enlaces | BibTeX | Etiquetas: DFT, Diamond nanowires, Molecule sensing, Molecule trapping, Nitrogen oxides
@article{CID2025112251,
title = {Doped diamond nanowires for NO and NO2 adsorption and sensing: A DFT investigation},
author = {Brandom J. Cid and Jos\'{e} E. Santana and \'{A}lvaro Miranda and Alejandro Trejo and Fernando Salazar and Luis A. P\'{e}rez and Riccardo Rurali and Miguel Cruz-Irisson},
url = {https://www.sciencedirect.com/science/article/pii/S0925963525003085},
doi = {https://doi.org/10.1016/j.diamond.2025.112251},
issn = {0925-9635},
year = {2025},
date = {2025-01-01},
urldate = {2025-01-01},
journal = {Diamond and Related Materials},
volume = {154},
pages = {112251},
abstract = {Density functional theory (DFT) calculations were performed to investigate the adsorption of gas molecules (N2, O2, NO, and NO2) on undoped and X-doped (X = B, Al, Ga) diamond nanowires (DNWs). The sensitivity of these nanowires towards pollutant molecules was analyzed through the calculation of the molecule adsorption energies and electronic properties of the molecule-DNW complexes. The results show that all the studied molecules are adsorbed on undoped and doped DNWs. Moreover, the adsorption energies of N2, O2 and NO2 are improved by doping DNW with Al atoms. In contrast, undoped DNWs have the highest adsorption energy for NO molecules. Moreover, the results show that undoped DNWs are highly sensitive towards NO2 molecules, whereas B-doped DNWs are highly sensitive to N2, O2, and NO. In addition to the excellent performance of DNWs for O2, NO, and NO2 trapping and N2 sensing, they also exhibit adequate recovery times for high-temperature sensing applications.},
keywords = {DFT, Diamond nanowires, Molecule sensing, Molecule trapping, Nitrogen oxides},
pubstate = {published},
tppubtype = {article}
}
Density functional theory (DFT) calculations were performed to investigate the adsorption of gas molecules (N2, O2, NO, and NO2) on undoped and X-doped (X = B, Al, Ga) diamond nanowires (DNWs). The sensitivity of these nanowires towards pollutant molecules was analyzed through the calculation of the molecule adsorption energies and electronic properties of the molecule-DNW complexes. The results show that all the studied molecules are adsorbed on undoped and doped DNWs. Moreover, the adsorption energies of N2, O2 and NO2 are improved by doping DNW with Al atoms. In contrast, undoped DNWs have the highest adsorption energy for NO molecules. Moreover, the results show that undoped DNWs are highly sensitive towards NO2 molecules, whereas B-doped DNWs are highly sensitive to N2, O2, and NO. In addition to the excellent performance of DNWs for O2, NO, and NO2 trapping and N2 sensing, they also exhibit adequate recovery times for high-temperature sensing applications.