2022
Arellano, Lucia Guadalupe; Salazar, Fernando; Miranda, Álvaro; Trejo, Alejandro; Pérez, Luis Antonio; Nakamura, Jun; Cruz-Irisson, Miguel
Tunable electronic properties of silicon nanowires as sodium-battery anodes Artículo de revista
En: International Journal of Energy Research, vol. 46, no 12, pp. 17151-17162, 2022.
Resumen | Enlaces | BibTeX | Etiquetas: DFT, Silicon nanowires, sodium-ion batteries
@article{https://doi.org/10.1002/er.8378,
title = {Tunable electronic properties of silicon nanowires as sodium-battery anodes},
author = {Lucia Guadalupe Arellano and Fernando Salazar and \'{A}lvaro Miranda and Alejandro Trejo and Luis Antonio P\'{e}rez and Jun Nakamura and Miguel Cruz-Irisson},
url = {https://onlinelibrary.wiley.com/doi/abs/10.1002/er.8378},
doi = {https://doi.org/10.1002/er.8378},
year = {2022},
date = {2022-01-01},
journal = {International Journal of Energy Research},
volume = {46},
number = {12},
pages = {17151-17162},
abstract = {Summary Although materials for lithium-ion batteries have been extensively studied, alternatives such as sodium-ion batteries have acquired a renewed interest due to the abundance of Na compared to Li. However, the investigation of new materials for Na battery anodes is still in progress. In this work, a density functional study of the electronic properties of hydrogen passivated silicon nanowires (H-SiNWs) with interstitial Na atoms is presented. The studied H-SiNWs are grown along the [001] crystallographic direction and have a diameter close to 2.5 nm. Moreover, from 1 to 12 interstitial Na atoms per H-SiNW unit cell were considered. The results reveal that the former semiconducting nanowires become metallic for all the Na concentrations, even for the case of a single Na atom. The formation energy diminishes as a function of the concentration of Na atoms, revealing a loss of energetic stability since the size of the Na atoms strongly modify the Si-Si bonds. Moreover, when the Na atoms are removed from the metallic sodiated H-SiNW and relaxed again, for concentrations between 1 and 8 Na atoms, the resulting structure corresponds to the original H-SiNW one, indicating that the Na insertion/extraction process is a reversible one. In contrast, for concentrations between 10 and 12 Na atoms, the structure that results from removing of these Na atoms has a different atomic arrangement, in comparison with the initial H-SiNW, and also smaller band gap. These results open the possibility to consider the H-SiNWs as potential anodic materials in sodium rechargeable batteries.},
keywords = {DFT, Silicon nanowires, sodium-ion batteries},
pubstate = {published},
tppubtype = {article}
}
Summary Although materials for lithium-ion batteries have been extensively studied, alternatives such as sodium-ion batteries have acquired a renewed interest due to the abundance of Na compared to Li. However, the investigation of new materials for Na battery anodes is still in progress. In this work, a density functional study of the electronic properties of hydrogen passivated silicon nanowires (H-SiNWs) with interstitial Na atoms is presented. The studied H-SiNWs are grown along the [001] crystallographic direction and have a diameter close to 2.5 nm. Moreover, from 1 to 12 interstitial Na atoms per H-SiNW unit cell were considered. The results reveal that the former semiconducting nanowires become metallic for all the Na concentrations, even for the case of a single Na atom. The formation energy diminishes as a function of the concentration of Na atoms, revealing a loss of energetic stability since the size of the Na atoms strongly modify the Si-Si bonds. Moreover, when the Na atoms are removed from the metallic sodiated H-SiNW and relaxed again, for concentrations between 1 and 8 Na atoms, the resulting structure corresponds to the original H-SiNW one, indicating that the Na insertion/extraction process is a reversible one. In contrast, for concentrations between 10 and 12 Na atoms, the structure that results from removing of these Na atoms has a different atomic arrangement, in comparison with the initial H-SiNW, and also smaller band gap. These results open the possibility to consider the H-SiNWs as potential anodic materials in sodium rechargeable batteries.