2024
González, I.; Nava, R.; Cruz-Irisson, M.; Río, J. A.; Ornelas-Cruz, I.; Pilo, J.; Rubo, Y. G.; Trejo, A.; Tagüeña, J.
First-principles study of interstitial Li effects on the electronic, structural and diffusion properties of highly boron-doped porous silicon Artículo de revista
En: Journal of Energy Storage, vol. 102, pp. 114087, 2024, ISSN: 2352-152X.
Resumen | Enlaces | BibTeX | Etiquetas: B-doping, Bulk modulus, Diffusion path, electronic properties, Li-ion battery, porous silicon
@article{GONZALEZ2024114087,
title = {First-principles study of interstitial Li effects on the electronic, structural and diffusion properties of highly boron-doped porous silicon},
author = {I. Gonz\'{a}lez and R. Nava and M. Cruz-Irisson and J. A. R\'{i}o and I. Ornelas-Cruz and J. Pilo and Y. G. Rubo and A. Trejo and J. Tag\"{u}e\~{n}a},
url = {https://www.sciencedirect.com/science/article/pii/S2352152X24036739},
doi = {https://doi.org/10.1016/j.est.2024.114087},
issn = {2352-152X},
year = {2024},
date = {2024-01-01},
urldate = {2024-01-01},
journal = {Journal of Energy Storage},
volume = {102},
pages = {114087},
abstract = {Silicon-based anodes for Li-ion batteries have been the subject of intense research due to their high storage capacity, low working potential, and abundant resources. Nevertheless, the low electrical conductivity, large volume changes and slow Li ion diffusivity in silicon have hampered its performance. In this work, we modelled B-doped porous silicon passivated with hydrogen to analyse the effect of interstitial Li atoms on its electronic, structural, and diffusion properties by the density functional theory (DFT). Results show that high boron doping induces metallic properties in porous silicon, which are also improved by interstitial Li atoms. The metallic behaviour of porous Si is detailed by the calculations of the effective masses and the Fermi surfaces. Conversely, the B atoms produce volumetric compression, which partially compensates for the volumetric expansion generated by the interstitial Li atoms. Furthermore, the bulk moduli of the B-doped porous structure and the B-doped porous structure with the highest Li concentration here considered show a variation of 0.2 % and 0.37 %, respectively. These results suggest that the addition of large amounts of B and Li atoms slightly reduces the hydrostatic compressive strength of the porous silicon. Finally, we found that the dopant contributes to the asymmetric Li diffusion activation since the energy barrier of 0.86 eV must be overcome when Li migration occurs from the interior to the edge of the wall. In contrast, in the opposite direction, the energy barrier increases to 1.43 eV. This implies that the Li atom could preferentially be stored in the pore surface area.},
keywords = {B-doping, Bulk modulus, Diffusion path, electronic properties, Li-ion battery, porous silicon},
pubstate = {published},
tppubtype = {article}
}
2022
González, Israel; Pilo, Jorge; Trejo, Alejandro; Miranda, Álvaro; Salazar, Fernando; Nava, Rocío; Cruz-Irisson, Miguel
Sodium effects on the electronic and structural properties of porous silicon for energy storage Artículo de revista
En: International Journal of Energy Research, vol. 46, no 7, pp. 8760-8780, 2022.
Resumen | Enlaces | BibTeX | Etiquetas: DFT, Na-batteries, NEB, porous silicon
@article{https://doi.org/10.1002/er.7754,
title = {Sodium effects on the electronic and structural properties of porous silicon for energy storage},
author = {Israel Gonz\'{a}lez and Jorge Pilo and Alejandro Trejo and \'{A}lvaro Miranda and Fernando Salazar and Roc\'{i}o Nava and Miguel Cruz-Irisson},
url = {https://onlinelibrary.wiley.com/doi/abs/10.1002/er.7754},
doi = {https://doi.org/10.1002/er.7754},
year = {2022},
date = {2022-01-01},
journal = {International Journal of Energy Research},
volume = {46},
number = {7},
pages = {8760-8780},
abstract = {Summary Porous silicon is a promising anode material in Na-ion batteries, however, there are still no theoretical studies describing the Na storage mechanism within this material. In this work, we present a density functional theory study on the effects of interstitial and substitutional Na atoms on the electronic and structural properties of hydrogen-passivated porous silicon (pSiH). The results show that the substitutional Na reduces the band gap, while the interstitial Na induces metallic properties on the pSiH. The diffusion analysis by the nudged elastic band scheme, reveals that the interstitial Na atoms migrate from the silicon lattice to the pore surface, while the pSiH energy barrier decreases by 20.42% relative to the bulk silicon energy barrier value. Finally, the hydrogenated surface proves to be beneficial for both Na adsorption and diffusion. These results could be important for understanding the storage and diffusion mechanism of Na on pSiH .},
keywords = {DFT, Na-batteries, NEB, porous silicon},
pubstate = {published},
tppubtype = {article}
}
2020
González, Israel; Santiago, Francisco De; Arellano, Lucía G.; Miranda, Álvaro; Trejo, Alejandro; Salazar, Fernando; Cruz-Irisson, Miguel
Theoretical modelling of porous silicon decorated with metal atoms for hydrogen storage Artículo de revista
En: International Journal of Hydrogen Energy, vol. 45, no 49, pp. 26321-26333, 2020, ISSN: 0360-3199, (Progress in Hydrogen Production and Utilization).
Resumen | Enlaces | BibTeX | Etiquetas: Beryllium, DFT, Hydrogen storage, Lithium, Palladium, porous silicon
@article{GONZALEZ202026321,
title = {Theoretical modelling of porous silicon decorated with metal atoms for hydrogen storage},
author = {Israel Gonz\'{a}lez and Francisco De Santiago and Luc\'{i}a G. Arellano and \'{A}lvaro Miranda and Alejandro Trejo and Fernando Salazar and Miguel Cruz-Irisson},
url = {https://www.sciencedirect.com/science/article/pii/S0360319920318784},
doi = {https://doi.org/10.1016/j.ijhydene.2020.05.097},
issn = {0360-3199},
year = {2020},
date = {2020-01-01},
journal = {International Journal of Hydrogen Energy},
volume = {45},
number = {49},
pages = {26321-26333},
abstract = {There is experimental evidence suggesting that metal adatoms enhance the physisorption of hydrogen molecules in porous silicon. However, theoretical reports about the physical properties for this material to be suitable for hydrogen storage are scarce. Thus, in this work we employ Density Functional Theory to study the effects of decoration with metals on the hydrogen-adsorption properties on hydrogen-passivated porous silicon. The results indicate that lithium and palladium decorating atoms are strongly bonded to the porous silicon\textemdashpreventing the adverse effects of clusterization\textemdashwhile beryllium is not. Lithium and palladium exhibit physisorption capacity up to 5 and 4 hydrogen molecules per adatom, respectively. In contrast, adsorption of hydrogen molecules in beryllium is too weak as the adatom is not chemisorbed on the surface of the pore. The hydrogen passivation of the pore surface proves to be beneficial for a strong chemisorption of the decorating atoms.},
note = {Progress in Hydrogen Production and Utilization},
keywords = {Beryllium, DFT, Hydrogen storage, Lithium, Palladium, porous silicon},
pubstate = {published},
tppubtype = {article}
}
2019
Santiago, Francisco; Santana, José Eduardo; Miranda, Álvaro; Trejo, Alejandro; Vázquez-Medina, Rubén; Pérez, Luis Antonio; Cruz-Irisson, Miguel
Quasi-one-dimensional silicon nanostructures for gas molecule adsorption: a DFT investigation Artículo de revista
En: Applied Surface Science, vol. 475, pp. 278-284, 2019, ISSN: 0169-4332.
Resumen | Enlaces | BibTeX | Etiquetas: Chemical sensors, Density Functional Theory, Molecule adsorption, porous silicon, Sensing, Silicon nanowires
@article{DESANTIAGO2019278,
title = {Quasi-one-dimensional silicon nanostructures for gas molecule adsorption: a DFT investigation},
author = {Francisco Santiago and Jos\'{e} Eduardo Santana and \'{A}lvaro Miranda and Alejandro Trejo and Rub\'{e}n V\'{a}zquez-Medina and Luis Antonio P\'{e}rez and Miguel Cruz-Irisson},
url = {https://www.sciencedirect.com/science/article/pii/S0169433218336109},
doi = {https://doi.org/10.1016/j.apsusc.2018.12.258},
issn = {0169-4332},
year = {2019},
date = {2019-01-01},
journal = {Applied Surface Science},
volume = {475},
pages = {278-284},
abstract = {Porous structures offer an enormous surface suitable for gas sensing, however, the effects of their quantum quasi-confinement on their molecular sensing capacities has been seldom studied. In this work the gas-sensing capability of silicon nanopores is investigated by comparing it to silicon nanowires using first principles calculations. In particular, the adsorption of toxic gas molecules CO, NO, SO2 and NO2 on both silicon nanopores and nanowires with the same cross sections was studied. Results show that sensing-related properties of silicon nanopores and nanowires are very similar, suggesting that surface effects are predominant over the confinement. However, there are certain cases where there are remarked differences between the nanowire and porous cases, for instance, CO-adsorbed nanoporous silicon shows a metallic band structure unlike its nanowire counterpart, which remains semiconducting, suggesting that quantum quasi-confinement may be playing an important role in this behaviour. These results are significant in the study of the quantum phenomena behind the adsorption of gas molecules on nanostructure’s surfaces, with possible applications in chemical detectors or catalysts.},
keywords = {Chemical sensors, Density Functional Theory, Molecule adsorption, porous silicon, Sensing, Silicon nanowires},
pubstate = {published},
tppubtype = {article}
}