2023
Bermeo-Campos, R.; Arellano, L. G.; Miranda, Á.; Salazar, F.; Trejo, A.; Oviedo-Roa, R.; Cruz-Irisson, M.
DFT insights into Cu-driven tuning of chemisorption and physisorption in the hydrogen storage by SnC monolayers Artículo de revista
En: Journal of Energy Storage, vol. 73D, 2023.
Enlaces | BibTeX | Etiquetas: 2D monolayers, Density functional calculations
@article{energystore2023b,
title = {DFT insights into Cu-driven tuning of chemisorption and physisorption in the hydrogen storage by SnC monolayers},
author = {R. Bermeo-Campos and L. G. Arellano and \'{A}. Miranda and F. Salazar and A. Trejo and R. Oviedo-Roa and M. Cruz-Irisson},
url = {https://doi.org/10.1016/j.est.2023.109205},
doi = {10.1016/j.est.2023.109205},
year = {2023},
date = {2023-09-13},
urldate = {2023-09-13},
journal = {Journal of Energy Storage},
volume = {73D},
keywords = {2D monolayers, Density functional calculations},
pubstate = {published},
tppubtype = {article}
}
Sosa, A.; B. J. Cid, Á. Miranda; Pérez, L. A.; Hernández-Cocoletzi, G.; Cruz-Irisson, M.
A DFT investigation: High-capacity hydrogen storage in metal-decorated doped germanene Artículo de revista
En: Journal of Energy Storage, vol. En prensa, 2023.
BibTeX | Etiquetas: 2D monolayers, Alkali metal adatoms, Density functional calculations
@article{energystore2023c,
title = {A DFT investigation: High-capacity hydrogen storage in metal-decorated doped germanene},
author = {A. Sosa and B. J. Cid, \'{A}. Miranda and L. A. P\'{e}rez and G. Hern\'{a}ndez-Cocoletzi and M. Cruz-Irisson},
year = {2023},
date = {2023-09-12},
urldate = {2023-09-13},
journal = {Journal of Energy Storage},
volume = {En prensa},
keywords = {2D monolayers, Alkali metal adatoms, Density functional calculations},
pubstate = {published},
tppubtype = {article}
}
2021
Arellano, Lucía G.; Santiago, Francisco; Miranda, Álvaro; Salazar, Fernando; Trejo, Alejandro; Pérez, Luis A.; Cruz-Irisson, Miguel
Hydrogen storage capacities of alkali and alkaline-earth metal atoms on SiC monolayer: A first-principles study Artículo de revista
En: International Journal of Hydrogen Energy, vol. 46, no 38, pp. 20266-20279, 2021, ISSN: 0360-3199, (International Journal of Hydrogen Energy Special Issue devoted to the 32nd International Conference ECOS 2019).
Resumen | Enlaces | BibTeX | Etiquetas: 2D monolayers, Adsorption energy, DFT, Hydrogen storage, Silicon carbide
@article{ARELLANO202120266,
title = {Hydrogen storage capacities of alkali and alkaline-earth metal atoms on SiC monolayer: A first-principles study},
author = {Luc\'{i}a G. Arellano and Francisco Santiago and \'{A}lvaro Miranda and Fernando Salazar and Alejandro Trejo and Luis A. P\'{e}rez and Miguel Cruz-Irisson},
url = {https://www.sciencedirect.com/science/article/pii/S0360319920310144},
doi = {https://doi.org/10.1016/j.ijhydene.2020.03.078},
issn = {0360-3199},
year = {2021},
date = {2021-01-01},
journal = {International Journal of Hydrogen Energy},
volume = {46},
number = {38},
pages = {20266-20279},
abstract = {A detailed theoretical Density-Functional-Theory-based investigation of hydrogen adsorption on silicon carbide monolayers (SiC-ML) decorated with alkali and alkaline-earth metal atoms is presented. The results show that the favourable position for all adsorbed metal atoms is above a Si atom. These metal atoms are chemisorbed to the SiC-ML, except for Mg which is physisorbed. The adsorbed atoms act in turn as adsorption sites for H2 molecules. The single-sided K-functionalized SiC-ML can store up to six H2 molecules. For double-side K-decorated SiC-ML, up to ten H2 molecules can be captured. In all cases, the H2 molecules are physisorbed. This is beneficial because the breaking of chemical bonds, which otherwise would be needed to make use of the stored H2, is energetically expensive. These results find decorated SiC-ML as a promising material for hydrogen storage systems.},
note = {International Journal of Hydrogen Energy Special Issue devoted to the 32nd International Conference ECOS 2019},
keywords = {2D monolayers, Adsorption energy, DFT, Hydrogen storage, Silicon carbide},
pubstate = {published},
tppubtype = {article}
}