2014
Trejo, A.; López-Palacios, L.; Vázquez-Medina, R.; Cruz-Irisson, M.
Theoretical approach to the phonon modes and specific heat of germanium nanowires Artículo de revista
En: Physica B: Condensed Matter, vol. 453, pp. 14-18, 2014, ISSN: 0921-4526, (Low-Dimensional Semiconductor Structures - A part of the XXII International Material Research Congress (IMRC 2013)).
Resumen | Enlaces | BibTeX | Etiquetas: Germanium, Nanowires, Phonons, Specific Heat
@article{TREJO201414,
title = {Theoretical approach to the phonon modes and specific heat of germanium nanowires},
author = {A. Trejo and L. L\'{o}pez-Palacios and R. V\'{a}zquez-Medina and M. Cruz-Irisson},
url = {https://www.sciencedirect.com/science/article/pii/S0921452614003706},
doi = {https://doi.org/10.1016/j.physb.2014.05.005},
issn = {0921-4526},
year = {2014},
date = {2014-01-01},
journal = {Physica B: Condensed Matter},
volume = {453},
pages = {14-18},
abstract = {The phonon modes and specific heat of Ge nanowires were computed using a first principles density functional theory scheme with a generalized gradient approximation and finite-displacement supercell algorithms. The nanowires were modeled in three different directions: [001], [111], and [110], using the supercell technique. All surface dangling bonds were saturated with Hydrogen atoms. The results show that the specific heat of the GeNWs at room temperature increases as the nanowire diameter decreases, regardless the orientation due to the phonon confinement and surface passivation. Also the phonon confinement effects could be observed since the highest optical phonon modes in the Ge vibration interval shifted to a lower frequency compared to their bulk counterparts.},
note = {Low-Dimensional Semiconductor Structures - A part of the XXII International Material Research Congress (IMRC 2013)},
keywords = {Germanium, Nanowires, Phonons, Specific Heat},
pubstate = {published},
tppubtype = {article}
}
The phonon modes and specific heat of Ge nanowires were computed using a first principles density functional theory scheme with a generalized gradient approximation and finite-displacement supercell algorithms. The nanowires were modeled in three different directions: [001], [111], and [110], using the supercell technique. All surface dangling bonds were saturated with Hydrogen atoms. The results show that the specific heat of the GeNWs at room temperature increases as the nanowire diameter decreases, regardless the orientation due to the phonon confinement and surface passivation. Also the phonon confinement effects could be observed since the highest optical phonon modes in the Ge vibration interval shifted to a lower frequency compared to their bulk counterparts.