2012
Cuevas, J. L.; Trejo, A.; Calvino, M.; Carvajal, E.; Cruz-Irisson, M.
Ab-initio modeling of oxygen on the surface passivation of 3CSiC nanostructures Artículo de revista
En: Applied Surface Science, vol. 258, no 21, pp. 8360-8365, 2012, ISSN: 0169-4332, (VII International Workshop on Semiconductor Surface Passivation, KRAKÓW, POLAND, September 11 - 15, 2011).
Resumen | Enlaces | BibTeX | Etiquetas: Density Functional Theory, Nanowires, Porous semiconductors, Silicon carbide
@article{CUEVAS20128360,
title = {Ab-initio modeling of oxygen on the surface passivation of 3CSiC nanostructures},
author = {J. L. Cuevas and A. Trejo and M. Calvino and E. Carvajal and M. Cruz-Irisson},
url = {https://www.sciencedirect.com/science/article/pii/S0169433212006289},
doi = {https://doi.org/10.1016/j.apsusc.2012.03.175},
issn = {0169-4332},
year = {2012},
date = {2012-01-01},
journal = {Applied Surface Science},
volume = {258},
number = {21},
pages = {8360-8365},
abstract = {In this work the effect of OH on the electronic states of H-passivated 3CSiC nanostructures, was studied by means of Density Functional Theory. We compare the electronic band structure for a [111]-oriented nanowire with total H, OH passivation and a combination of both. Also the electronic states of a porous silicon carbide case (PSiC) a C-rich pore surface in which the dangling bonds on the surface are saturated with H and OH was studied. The calculations show that the surface replacement of H with OH radicals is always energetically favorable and more stable. In all cases the OH passivation produced a similar effect than the H passivation, with electronic band gap of lower energy value than the H-terminated phase. When the OH groups are attached to C atoms, the band gap feature is changed from direct to indirect. The results indicate the possibility of band gap engineering on SiC nanostructures through the surface passivation species.},
note = {VII International Workshop on Semiconductor Surface Passivation, KRAK\'{O}W, POLAND, September 11 - 15, 2011},
keywords = {Density Functional Theory, Nanowires, Porous semiconductors, Silicon carbide},
pubstate = {published},
tppubtype = {article}
}
In this work the effect of OH on the electronic states of H-passivated 3CSiC nanostructures, was studied by means of Density Functional Theory. We compare the electronic band structure for a [111]-oriented nanowire with total H, OH passivation and a combination of both. Also the electronic states of a porous silicon carbide case (PSiC) a C-rich pore surface in which the dangling bonds on the surface are saturated with H and OH was studied. The calculations show that the surface replacement of H with OH radicals is always energetically favorable and more stable. In all cases the OH passivation produced a similar effect than the H passivation, with electronic band gap of lower energy value than the H-terminated phase. When the OH groups are attached to C atoms, the band gap feature is changed from direct to indirect. The results indicate the possibility of band gap engineering on SiC nanostructures through the surface passivation species.