2021
Arellano, Lucia G.; Santiago, Francisco De; Miranda, Álvaro; Hernández-Hernández, Ivonne J.; Pérez, Luis A.; Cruz-Irisson, Miguel
Hydrogen storage on bidimensional GeC with transition metal adatoms Artículo de revista
En: Materials Letters, vol. 300, pp. 130239, 2021, ISSN: 0167-577X.
Resumen | Enlaces | BibTeX | Etiquetas: DFT, Germanium carbide, Green energy, Hydrogen storage, Transition metals, Two-dimensional materials
@article{ARELLANO2021130239,
title = {Hydrogen storage on bidimensional GeC with transition metal adatoms},
author = {Lucia G. Arellano and Francisco De Santiago and \'{A}lvaro Miranda and Ivonne J. Hern\'{a}ndez-Hern\'{a}ndez and Luis A. P\'{e}rez and Miguel Cruz-Irisson},
url = {https://www.sciencedirect.com/science/article/pii/S0167577X21009368},
doi = {https://doi.org/10.1016/j.matlet.2021.130239},
issn = {0167-577X},
year = {2021},
date = {2021-01-01},
journal = {Materials Letters},
volume = {300},
pages = {130239},
abstract = {A density functional theory study is undertaken to explore H2 physisorption in bidimensional germanium carbide (GeC) decorated with transition metals (Cu, Ag and Au). Adsorption energy results show that the Au and Cu metal atoms are preferentially chemisorbed to a carbon atom, while Ag is adsorbed over a Ge\textendashC bond. Hydrogen molecules are weakly adsorbed to the adatom, and the interaction mainly occurs between the charge density of the H\textendashH bond and the slightly positively charged adatom. The Ag-decorated GeC monolayer possesses the maximum hydrogen storage capacity with seven molecules adsorbed on the adatom. We think this work could encourage theoretical and experimental studies of the GeC monolayer and related two-dimensional materials for green energy development applications.},
keywords = {DFT, Germanium carbide, Green energy, Hydrogen storage, Transition metals, Two-dimensional materials},
pubstate = {published},
tppubtype = {article}
}
A density functional theory study is undertaken to explore H2 physisorption in bidimensional germanium carbide (GeC) decorated with transition metals (Cu, Ag and Au). Adsorption energy results show that the Au and Cu metal atoms are preferentially chemisorbed to a carbon atom, while Ag is adsorbed over a Ge–C bond. Hydrogen molecules are weakly adsorbed to the adatom, and the interaction mainly occurs between the charge density of the H–H bond and the slightly positively charged adatom. The Ag-decorated GeC monolayer possesses the maximum hydrogen storage capacity with seven molecules adsorbed on the adatom. We think this work could encourage theoretical and experimental studies of the GeC monolayer and related two-dimensional materials for green energy development applications.