2021
Marcos-Viquez, Alma L.; Miranda, Álvaro; Cruz-Irisson, Miguel; Pérez, Luis A.
Tin carbide monolayers as potential gas sensors Artículo de revista
En: Materials Letters, vol. 294, pp. 129751, 2021, ISSN: 0167-577X.
Resumen | Enlaces | BibTeX | Etiquetas: Electronic materials, Gas sensors, Nanocrystalline materials, NO dissociation, Tin carbide monolayers
@article{MARCOSVIQUEZ2021129751,
title = {Tin carbide monolayers as potential gas sensors},
author = {Alma L. Marcos-Viquez and \'{A}lvaro Miranda and Miguel Cruz-Irisson and Luis A. P\'{e}rez},
url = {https://www.sciencedirect.com/science/article/pii/S0167577X2100447X},
doi = {https://doi.org/10.1016/j.matlet.2021.129751},
issn = {0167-577X},
year = {2021},
date = {2021-01-01},
journal = {Materials Letters},
volume = {294},
pages = {129751},
abstract = {We theoretically address the capability of tin carbide (SnC) nanosheets, with honeycomb lattice structure, as molecular sensors or scavengers of NO, NO2 and SO2 toxic gas molecules, by using density functional calculations. The results show that NO, NO2 and SO2 molecules are chemisorbed on the SnC monolayers (2DSnC) with adsorption energies larger than 1 eV, where the stable configurations correspond to those where the N or S atoms are bonded to the C atom of the nanosheet. Moreover, NO2 can also be dissociated into NO and O on the 2DSnC, with an energy gain of 2.7 eV. Finally, the electronic properties of the formed complexes are discussed. In particular, the values of their band gaps could, in principle, allow the discrimination between sulphur and nitric oxides.},
keywords = {Electronic materials, Gas sensors, Nanocrystalline materials, NO dissociation, Tin carbide monolayers},
pubstate = {published},
tppubtype = {article}
}
We theoretically address the capability of tin carbide (SnC) nanosheets, with honeycomb lattice structure, as molecular sensors or scavengers of NO, NO2 and SO2 toxic gas molecules, by using density functional calculations. The results show that NO, NO2 and SO2 molecules are chemisorbed on the SnC monolayers (2DSnC) with adsorption energies larger than 1 eV, where the stable configurations correspond to those where the N or S atoms are bonded to the C atom of the nanosheet. Moreover, NO2 can also be dissociated into NO and O on the 2DSnC, with an energy gain of 2.7 eV. Finally, the electronic properties of the formed complexes are discussed. In particular, the values of their band gaps could, in principle, allow the discrimination between sulphur and nitric oxides.