El Dr. Fernando Salazar Posadas es egresado del Instituto de Física “Manuel Sandoval Vallarta” de la Facultad de Ciencias de la Universidad Autónoma de San Luis Potosí. Su trabajo de investigación doctoral lo desarrolló en el Instituto de Investigaciones en Materiales de la UNAM, posteriormente realizó una estancia posdoctoral en el Instituto de Física de la UNAM. Actualmente está adscrito a la Sección de Estudios de Posgrado e Investigación de la Escuela Superior de Ingeniería Mecánica y Eléctrica, unidad Culhuacán del Instituto Politécnico Nacional. Su trabajo de investigación lo desarrolla con el Grupo de Investigación en Nanociencias, en donde se investigan las propiedades físicas y químicas de nanomateriales con modelos y simulación computacional usando la Teoría del Funcional de la Densidad. Estas investigaciones, se aplican para mejorar diferentes sistemas energéticos como las celdas fotovoltaicas, detección de moléculas tóxicas, almacenamiento de hidrógeno, almacenamiento de energía en baterías recargables. En particular, el Dr. Salazar es responsable de desarrollar el modelado teórico, simulación computacional y diseño de electrodos nanoestructurados para su aplicación en baterías recargables. Pertenece al Sistema Nacional de Investigadores del CONACyT desde 2010, es miembro de la Sociedad Mexicana de Física y de la División de Estado Sólido desde 2014. Sus actividades como docente incluyen cursos de matemáticas y física en las carreras de ingeniería y en los programas de posgrado de la ESIME Culhuacán. Ha dirigido dos tesis de licenciatura y nueve en el programa Maestría en Ciencias de Ingeniería en Sistemas Energéticos. Actualmente dirige tres tesis de licenciatura, tres tesis de maestría y una tesis de doctorado en el programa de Doctorado en Energía. En su trayectoria de investigación tiene 29 publicaciones en revistas internacionales, donde se estudian las propiedades electrónicas, mecánicas, vibracionales y de transporte electrónico y térmico de materiales nanoestructurados y sus posibles aplicaciones para mejorar sistemas energéticos. El Dr. Fernando Salazar es actualmente el coordinador del programa Doctorado en Energía de la sede ESIME-Culhuacán, cargo que le fue asignado el 16 de septiembre de 2020.
Enlaces en plataformas académicas
Santana, José Eduardo; Sosa, Akari Narayama; Santiago, Francisco De; Miranda, Álvaro; Pérez, Luis Antonio; Trejo, Alejandro; Salazar, Fernando; Cruz-Irisson, Miguel
Highly sensitive amphetamine drug detection based on silicon nanowires: Theoretical investigation Artículo de revista
En: Surfaces and Interfaces, vol. 36, pp. 102584, 2023, ISSN: 2468-0230.
Resumen | Enlaces | BibTeX | Etiquetas: Amphetamine, DFT, Doping, Drug, Sensor, Silicon nanowires
@article{SANTANA2023102584,
title = {Highly sensitive amphetamine drug detection based on silicon nanowires: Theoretical investigation},
author = {Jos\'{e} Eduardo Santana and Akari Narayama Sosa and Francisco De Santiago and \'{A}lvaro Miranda and Luis Antonio P\'{e}rez and Alejandro Trejo and Fernando Salazar and Miguel Cruz-Irisson},
url = {https://www.sciencedirect.com/science/article/pii/S2468023022008392},
doi = {https://doi.org/10.1016/j.surfin.2022.102584},
issn = {2468-0230},
year = {2023},
date = {2023-01-01},
journal = {Surfaces and Interfaces},
volume = {36},
pages = {102584},
abstract = {Amphetamine (AA) is used in some therapeutic treatments, but it is also one of the most widely used illicit drugs. Therefore, a correct tracking of AA in various environments is crucial for its controlled distribution even inside the human body. However, current sensors are still too large to fit inside the human body and their biocompatibility is still deficient. Since the discovery of nanostructures, especially silicon nanowires (SiNWs), the possibilities of sensors inside the human body have increased due to their enhanced properties and biocompatibility. However, theoretical studies about the capabilities of SiNWs with surface modifications as sensing materials are still scarce. Using Density Functional Theory, we investigate the effects of amphetamine adsorption on the work function, and other electronic and structural properties, of pristine and modified SiNWs. Two types of modifications were studied, i.e., substitutional doping with B, Al, and Ga atoms and surface functionalization with the same species. The adsorption energies of the amphetamine molecule are larger for the doped nanowires, followed by the functionalized ones, and lastly, the undoped Si nanowire.This study shows that undoped, doped, and functionalized SiNWs are excellent candidates for AA sensing, with B being the best chemical species for improving AA adsorption for both doped and functionalized schemes.},
keywords = {Amphetamine, DFT, Doping, Drug, Sensor, Silicon nanowires},
pubstate = {published},
tppubtype = {article}
}
Arellano, Lucia G.; Cid, Brandom J.; Santana, José E.; Santiago, Francisco De; Miranda, Álvaro; Trejo, Alejandro; Salazar, Fernando; Pérez, Luis A.; Cruz-Irisson, Miguel
DFT investigation of metal-decorated silicon carbide nanosheets for the adsorption of NH3 Artículo de revista
En: Materials Today Communications, vol. 36, pp. 106704, 2023, ISSN: 2352-4928.
Resumen | Enlaces | BibTeX | Etiquetas: 2D materials, Ammonia, DFT, Monolayer, Sensor, Silicon carbide
@article{ARELLANO2023106704,
title = {DFT investigation of metal-decorated silicon carbide nanosheets for the adsorption of NH3},
author = {Lucia G. Arellano and Brandom J. Cid and Jos\'{e} E. Santana and Francisco De Santiago and \'{A}lvaro Miranda and Alejandro Trejo and Fernando Salazar and Luis A. P\'{e}rez and Miguel Cruz-Irisson},
url = {https://www.sciencedirect.com/science/article/pii/S2352492823013958},
doi = {https://doi.org/10.1016/j.mtcomm.2023.106704},
issn = {2352-4928},
year = {2023},
date = {2023-01-01},
journal = {Materials Today Communications},
volume = {36},
pages = {106704},
abstract = {The threat that ammonia (NH3) poses in various human activity environments drives the necessity of sensors of higher sensitivity. Two-dimensional (2D) materials have attracted attention for this particular purpose, with 2D silicon carbide being one prospect for this application. However, this potential use has been relatively unexplored. In this work, we study the adsorption of NH3 on pristine and metal (Li, Na, Mg, Ca, Ag, Au, Cu, Pd, and Ti) decorated silicon carbide monolayers (2D-SiC) using a first-principles approach based on Density-Functional Theory. Energetic analyses were performed to determine the enhancement or deterioration of the NH3 adsorption capacities of the 2D-SiC. The results show that the Ag- and Au-decorated monolayers are the best candidates for NH3 capturing due to the large adsorption energies found in these systems.},
keywords = {2D materials, Ammonia, DFT, Monolayer, Sensor, Silicon carbide},
pubstate = {published},
tppubtype = {article}
}
© 2022 Grupo de Investigación en Nanociencias de ESIME Culhuacan | All Rights Reserved. | Hecho por Vleeko Agencia de Marketing Digital CDMX
¡Escríbenos!