El Dr. Fernando Salazar Posadas es egresado del Instituto de Física “Manuel Sandoval Vallarta” de la Facultad de Ciencias de la Universidad Autónoma de San Luis Potosí. Su trabajo de investigación doctoral lo desarrolló en el Instituto de Investigaciones en Materiales de la UNAM, posteriormente realizó una estancia posdoctoral en el Instituto de Física de la UNAM. Actualmente está adscrito a la Sección de Estudios de Posgrado e Investigación de la Escuela Superior de Ingeniería Mecánica y Eléctrica, unidad Culhuacán del Instituto Politécnico Nacional. Su trabajo de investigación lo desarrolla con el Grupo de Investigación en Nanociencias, en donde se investigan las propiedades físicas y químicas de nanomateriales con modelos y simulación computacional usando la Teoría del Funcional de la Densidad. Estas investigaciones, se aplican para mejorar diferentes sistemas energéticos como las celdas fotovoltaicas, detección de moléculas tóxicas, almacenamiento de hidrógeno, almacenamiento de energía en baterías recargables. En particular, el Dr. Salazar es responsable de desarrollar el modelado teórico, simulación computacional y diseño de electrodos nanoestructurados para su aplicación en baterías recargables. Pertenece al Sistema Nacional de Investigadores del CONACyT desde 2010, es miembro de la Sociedad Mexicana de Física y de la División de Estado Sólido desde 2014. Sus actividades como docente incluyen cursos de matemáticas y física en las carreras de ingeniería y en los programas de posgrado de la ESIME Culhuacán. Ha dirigido dos tesis de licenciatura y nueve en el programa Maestría en Ciencias de Ingeniería en Sistemas Energéticos. Actualmente dirige tres tesis de licenciatura, tres tesis de maestría y una tesis de doctorado en el programa de Doctorado en Energía. En su trayectoria de investigación tiene 29 publicaciones en revistas internacionales, donde se estudian las propiedades electrónicas, mecánicas, vibracionales y de transporte electrónico y térmico de materiales nanoestructurados y sus posibles aplicaciones para mejorar sistemas energéticos. El Dr. Fernando Salazar es actualmente el coordinador del programa Doctorado en Energía de la sede ESIME-Culhuacán, cargo que le fue asignado el 16 de septiembre de 2020.
Enlaces en plataformas académicas
Cid, Brandom J.; Santana, José E.; Miranda, Álvaro; Trejo, Alejandro; Salazar, Fernando; Pérez, Luis A.; Rurali, Riccardo; Cruz-Irisson, Miguel
Doped diamond nanowires for NO and NO2 adsorption and sensing: A DFT investigation Artículo de revista
En: Diamond and Related Materials, vol. 154, pp. 112251, 2025, ISSN: 0925-9635.
Resumen | Enlaces | BibTeX | Etiquetas: DFT, Diamond nanowires, Molecule sensing, Molecule trapping, Nitrogen oxides
@article{CID2025112251,
title = {Doped diamond nanowires for NO and NO2 adsorption and sensing: A DFT investigation},
author = {Brandom J. Cid and Jos\'{e} E. Santana and \'{A}lvaro Miranda and Alejandro Trejo and Fernando Salazar and Luis A. P\'{e}rez and Riccardo Rurali and Miguel Cruz-Irisson},
url = {https://www.sciencedirect.com/science/article/pii/S0925963525003085},
doi = {https://doi.org/10.1016/j.diamond.2025.112251},
issn = {0925-9635},
year = {2025},
date = {2025-01-01},
urldate = {2025-01-01},
journal = {Diamond and Related Materials},
volume = {154},
pages = {112251},
abstract = {Density functional theory (DFT) calculations were performed to investigate the adsorption of gas molecules (N2, O2, NO, and NO2) on undoped and X-doped (X = B, Al, Ga) diamond nanowires (DNWs). The sensitivity of these nanowires towards pollutant molecules was analyzed through the calculation of the molecule adsorption energies and electronic properties of the molecule-DNW complexes. The results show that all the studied molecules are adsorbed on undoped and doped DNWs. Moreover, the adsorption energies of N2, O2 and NO2 are improved by doping DNW with Al atoms. In contrast, undoped DNWs have the highest adsorption energy for NO molecules. Moreover, the results show that undoped DNWs are highly sensitive towards NO2 molecules, whereas B-doped DNWs are highly sensitive to N2, O2, and NO. In addition to the excellent performance of DNWs for O2, NO, and NO2 trapping and N2 sensing, they also exhibit adequate recovery times for high-temperature sensing applications.},
keywords = {DFT, Diamond nanowires, Molecule sensing, Molecule trapping, Nitrogen oxides},
pubstate = {published},
tppubtype = {article}
}
Jiménez-Sánchez, Ricardo; Pérez-Figueroa, Sara E.; Trejo-Baños, Alejandro; Miranda, Álvaro; Salazar, Fernando; Cruz-Irisson, Miguel
Surface Li effects on the electronic properties of GaAs nanowires: A first principles approach Artículo de revista
En: Surfaces and Interfaces, vol. 38, pp. 102745, 2023, ISSN: 2468-0230.
Resumen | Enlaces | BibTeX | Etiquetas: DFT, GaAs nanowires, Surface passivation
@article{JIMENEZSANCHEZ2023102745,
title = {Surface Li effects on the electronic properties of GaAs nanowires: A first principles approach},
author = {Ricardo Jim\'{e}nez-S\'{a}nchez and Sara E. P\'{e}rez-Figueroa and Alejandro Trejo-Ba\~{n}os and \'{A}lvaro Miranda and Fernando Salazar and Miguel Cruz-Irisson},
url = {https://www.sciencedirect.com/science/article/pii/S2468023023001153},
doi = {https://doi.org/10.1016/j.surfin.2023.102745},
issn = {2468-0230},
year = {2023},
date = {2023-01-01},
journal = {Surfaces and Interfaces},
volume = {38},
pages = {102745},
abstract = {The quest for the improvement of Li-Ion batteries has directed attention towards semiconductor nanostructures, like nanowires. However, the surface interactions and effects of Li on the electronic properties of these nanostcrutures has been less explored. Especially the possible modifications to the properties of GaAs nanowires that arise from having Li on its surface have been seldom studied. In this work, we employed Density Functional Theory to study the effects of surface Li on the electronic properties of H passivated GaAs nanowires grown along the [111] direction. To determinate the isolated effects of Li on either surface Ga or As, only Li bonded to either Ga[GaAsNW_Ga-Li] or As[GaAsNW_As-Li] were considered, and up to 6 Li were placed on the respective nanowire surfaces. The results indicate that the energy gap is a function of the Li concentration, the nanowire diameter and the placement of Li on the nanowire surface. The binding energy is independent of the number of Li on the nanowire surface, where the GaAsNW_Ga-Li has slower binding energies compared to the GaAsNW_As-Li, but the binding energies and band gaps in both cases are high, which would hinder the application of these nanowires in Li ion batteries.},
keywords = {DFT, GaAs nanowires, Surface passivation},
pubstate = {published},
tppubtype = {article}
}
Santana, José Eduardo; Sosa, Akari Narayama; Santiago, Francisco De; Miranda, Álvaro; Pérez, Luis Antonio; Trejo, Alejandro; Salazar, Fernando; Cruz-Irisson, Miguel
Highly sensitive amphetamine drug detection based on silicon nanowires: Theoretical investigation Artículo de revista
En: Surfaces and Interfaces, vol. 36, pp. 102584, 2023, ISSN: 2468-0230.
Resumen | Enlaces | BibTeX | Etiquetas: Amphetamine, DFT, Doping, Drug, Sensor, Silicon nanowires
@article{SANTANA2023102584,
title = {Highly sensitive amphetamine drug detection based on silicon nanowires: Theoretical investigation},
author = {Jos\'{e} Eduardo Santana and Akari Narayama Sosa and Francisco De Santiago and \'{A}lvaro Miranda and Luis Antonio P\'{e}rez and Alejandro Trejo and Fernando Salazar and Miguel Cruz-Irisson},
url = {https://www.sciencedirect.com/science/article/pii/S2468023022008392},
doi = {https://doi.org/10.1016/j.surfin.2022.102584},
issn = {2468-0230},
year = {2023},
date = {2023-01-01},
journal = {Surfaces and Interfaces},
volume = {36},
pages = {102584},
abstract = {Amphetamine (AA) is used in some therapeutic treatments, but it is also one of the most widely used illicit drugs. Therefore, a correct tracking of AA in various environments is crucial for its controlled distribution even inside the human body. However, current sensors are still too large to fit inside the human body and their biocompatibility is still deficient. Since the discovery of nanostructures, especially silicon nanowires (SiNWs), the possibilities of sensors inside the human body have increased due to their enhanced properties and biocompatibility. However, theoretical studies about the capabilities of SiNWs with surface modifications as sensing materials are still scarce. Using Density Functional Theory, we investigate the effects of amphetamine adsorption on the work function, and other electronic and structural properties, of pristine and modified SiNWs. Two types of modifications were studied, i.e., substitutional doping with B, Al, and Ga atoms and surface functionalization with the same species. The adsorption energies of the amphetamine molecule are larger for the doped nanowires, followed by the functionalized ones, and lastly, the undoped Si nanowire.This study shows that undoped, doped, and functionalized SiNWs are excellent candidates for AA sensing, with B being the best chemical species for improving AA adsorption for both doped and functionalized schemes.},
keywords = {Amphetamine, DFT, Doping, Drug, Sensor, Silicon nanowires},
pubstate = {published},
tppubtype = {article}
}
Bermeo-Campos, R.; Madrigal-Carrillo, K.; Perez-Figueroa, S. E.; Calvino, M.; Trejo, A.; Salazar, F.; Miranda, A.; Cruz-Irisson, M.
Surface morphology effects on the mechanical and electronic properties of halogenated porous 3C-SiC: A DFT study Artículo de revista
En: Applied Surface Science, vol. 631, pp. 157481, 2023, ISSN: 0169-4332.
Resumen | Enlaces | BibTeX | Etiquetas: DFT, electronic properties, Halogens, Mechanical properties, Porous SiC
@article{BERMEOCAMPOS2023157481,
title = {Surface morphology effects on the mechanical and electronic properties of halogenated porous 3C-SiC: A DFT study},
author = {R. Bermeo-Campos and K. Madrigal-Carrillo and S. E. Perez-Figueroa and M. Calvino and A. Trejo and F. Salazar and A. Miranda and M. Cruz-Irisson},
url = {https://www.sciencedirect.com/science/article/pii/S0169433223011595},
doi = {https://doi.org/10.1016/j.apsusc.2023.157481},
issn = {0169-4332},
year = {2023},
date = {2023-01-01},
journal = {Applied Surface Science},
volume = {631},
pages = {157481},
abstract = {Silicon carbide nanostructures have been widely studied due to their potential technological applications. However, the theoretical characterization, especially the effect of the surface on the mechanical properties of this material is still underexplored. In this work, we report the electronic and mechanical properties of 3C-SiC nanopores with different pore surfaces and different passivation schemes using a density functional theory approach and the supercell technique. The nanopores were modeled by removing columns of atoms in the [001] direction, thus creating four types of pores, two with an Only C or Si pore and two with a C or Si-Rich pore surface. All surfaces were passivated with hydrogen, then some atoms of H were replaced with fluorine and chlorine. Results show that pores with a higher concentration of C on the surface have a larger bandgap compared with the Si cases. Moreover, only a few changes can be observed due to passivation. For the mechanical properties the Bulk and Young’s modulus were calculated and show that the Only C structures were the most brittle and, for almost all the pores, the H + Cl passivation improve the Bulk modulus.},
keywords = {DFT, electronic properties, Halogens, Mechanical properties, Porous SiC},
pubstate = {published},
tppubtype = {article}
}
Arellano, Lucia G.; Cid, Brandom J.; Santana, José E.; Santiago, Francisco De; Miranda, Álvaro; Trejo, Alejandro; Salazar, Fernando; Pérez, Luis A.; Cruz-Irisson, Miguel
DFT investigation of metal-decorated silicon carbide nanosheets for the adsorption of NH3 Artículo de revista
En: Materials Today Communications, vol. 36, pp. 106704, 2023, ISSN: 2352-4928.
Resumen | Enlaces | BibTeX | Etiquetas: 2D materials, Ammonia, DFT, Monolayer, Sensor, Silicon carbide
@article{ARELLANO2023106704,
title = {DFT investigation of metal-decorated silicon carbide nanosheets for the adsorption of NH3},
author = {Lucia G. Arellano and Brandom J. Cid and Jos\'{e} E. Santana and Francisco De Santiago and \'{A}lvaro Miranda and Alejandro Trejo and Fernando Salazar and Luis A. P\'{e}rez and Miguel Cruz-Irisson},
url = {https://www.sciencedirect.com/science/article/pii/S2352492823013958},
doi = {https://doi.org/10.1016/j.mtcomm.2023.106704},
issn = {2352-4928},
year = {2023},
date = {2023-01-01},
journal = {Materials Today Communications},
volume = {36},
pages = {106704},
abstract = {The threat that ammonia (NH3) poses in various human activity environments drives the necessity of sensors of higher sensitivity. Two-dimensional (2D) materials have attracted attention for this particular purpose, with 2D silicon carbide being one prospect for this application. However, this potential use has been relatively unexplored. In this work, we study the adsorption of NH3 on pristine and metal (Li, Na, Mg, Ca, Ag, Au, Cu, Pd, and Ti) decorated silicon carbide monolayers (2D-SiC) using a first-principles approach based on Density-Functional Theory. Energetic analyses were performed to determine the enhancement or deterioration of the NH3 adsorption capacities of the 2D-SiC. The results show that the Ag- and Au-decorated monolayers are the best candidates for NH3 capturing due to the large adsorption energies found in these systems.},
keywords = {2D materials, Ammonia, DFT, Monolayer, Sensor, Silicon carbide},
pubstate = {published},
tppubtype = {article}
}
Arellano, Lucia Guadalupe; Salazar, Fernando; Miranda, Álvaro; Trejo, Alejandro; Pérez, Luis Antonio; Nakamura, Jun; Cruz-Irisson, Miguel
Tunable electronic properties of silicon nanowires as sodium-battery anodes Artículo de revista
En: International Journal of Energy Research, vol. 46, no 12, pp. 17151-17162, 2022.
Resumen | Enlaces | BibTeX | Etiquetas: DFT, Silicon nanowires, sodium-ion batteries
@article{https://doi.org/10.1002/er.8378,
title = {Tunable electronic properties of silicon nanowires as sodium-battery anodes},
author = {Lucia Guadalupe Arellano and Fernando Salazar and \'{A}lvaro Miranda and Alejandro Trejo and Luis Antonio P\'{e}rez and Jun Nakamura and Miguel Cruz-Irisson},
url = {https://onlinelibrary.wiley.com/doi/abs/10.1002/er.8378},
doi = {https://doi.org/10.1002/er.8378},
year = {2022},
date = {2022-01-01},
journal = {International Journal of Energy Research},
volume = {46},
number = {12},
pages = {17151-17162},
abstract = {Summary Although materials for lithium-ion batteries have been extensively studied, alternatives such as sodium-ion batteries have acquired a renewed interest due to the abundance of Na compared to Li. However, the investigation of new materials for Na battery anodes is still in progress. In this work, a density functional study of the electronic properties of hydrogen passivated silicon nanowires (H-SiNWs) with interstitial Na atoms is presented. The studied H-SiNWs are grown along the [001] crystallographic direction and have a diameter close to 2.5 nm. Moreover, from 1 to 12 interstitial Na atoms per H-SiNW unit cell were considered. The results reveal that the former semiconducting nanowires become metallic for all the Na concentrations, even for the case of a single Na atom. The formation energy diminishes as a function of the concentration of Na atoms, revealing a loss of energetic stability since the size of the Na atoms strongly modify the Si-Si bonds. Moreover, when the Na atoms are removed from the metallic sodiated H-SiNW and relaxed again, for concentrations between 1 and 8 Na atoms, the resulting structure corresponds to the original H-SiNW one, indicating that the Na insertion/extraction process is a reversible one. In contrast, for concentrations between 10 and 12 Na atoms, the structure that results from removing of these Na atoms has a different atomic arrangement, in comparison with the initial H-SiNW, and also smaller band gap. These results open the possibility to consider the H-SiNWs as potential anodic materials in sodium rechargeable batteries.},
keywords = {DFT, Silicon nanowires, sodium-ion batteries},
pubstate = {published},
tppubtype = {article}
}
Cuevas, J. L.; Ojeda, M.; Calvino, M.; Trejo, A.; Salazar, F.; Miranda, A.; Perez, L. A.; Cruz-Irisson, M.
Theoretical approach to the phonon modes of GaSb nanowires Artículo de revista
En: Physica E: Low-dimensional Systems and Nanostructures, vol. 143, pp. 115372, 2022, ISSN: 1386-9477.
Resumen | Enlaces | BibTeX | Etiquetas: DFT, Gallium Antimonide, Nanowires, Phonons
@article{CUEVAS2022115372,
title = {Theoretical approach to the phonon modes of GaSb nanowires},
author = {J. L. Cuevas and M. Ojeda and M. Calvino and A. Trejo and F. Salazar and A. Miranda and L. A. Perez and M. Cruz-Irisson},
url = {https://www.sciencedirect.com/science/article/pii/S1386947722002077},
doi = {https://doi.org/10.1016/j.physe.2022.115372},
issn = {1386-9477},
year = {2022},
date = {2022-01-01},
journal = {Physica E: Low-dimensional Systems and Nanostructures},
volume = {143},
pages = {115372},
abstract = {Gallium Antimonide nanowires (GaSbNWs) have attracted much attention due to their possible applications in mid infrared detectors, however, there are only few theoretical investigations about this material and almost none regarding its vibrational properties. In this work the phonon modes of GaSbNWs were studied using the density functional theory with the finite displacement supercell scheme. The nanowires are modeled by removing atoms outside from a circumference along the [1 1 1] direction. All surface dangling bonds were passivated with hydrogen atoms. The results show that the expected red-shift of the highest frequency modes of GaSb are hindered by low frequency H bond bending modes. Three clearly distinguishable frequency intervals were observed: One with vibrations whose main contribution come from the Ga and Sb nanowire atoms, the second interval with main contributions from H bending modes and finally a high frequency interval where the main contributions come from H stretching modes. Also, it was observed that the radial breathing mode (RBM) decreases when the nanowire diameter increases, while the contrary tendency is observed with their specific heat (the specific heat increases as the nanowire diameter increases), except in the low temperature region where the lower diameters have higher specific heat values. These results could be important for the characterization of these nanowires with IR and Raman techniques.},
keywords = {DFT, Gallium Antimonide, Nanowires, Phonons},
pubstate = {published},
tppubtype = {article}
}
González, Israel; Pilo, Jorge; Trejo, Alejandro; Miranda, Álvaro; Salazar, Fernando; Nava, Rocío; Cruz-Irisson, Miguel
Sodium effects on the electronic and structural properties of porous silicon for energy storage Artículo de revista
En: International Journal of Energy Research, vol. 46, no 7, pp. 8760-8780, 2022.
Resumen | Enlaces | BibTeX | Etiquetas: DFT, Na-batteries, NEB, porous silicon
@article{https://doi.org/10.1002/er.7754,
title = {Sodium effects on the electronic and structural properties of porous silicon for energy storage},
author = {Israel Gonz\'{a}lez and Jorge Pilo and Alejandro Trejo and \'{A}lvaro Miranda and Fernando Salazar and Roc\'{i}o Nava and Miguel Cruz-Irisson},
url = {https://onlinelibrary.wiley.com/doi/abs/10.1002/er.7754},
doi = {https://doi.org/10.1002/er.7754},
year = {2022},
date = {2022-01-01},
journal = {International Journal of Energy Research},
volume = {46},
number = {7},
pages = {8760-8780},
abstract = {Summary Porous silicon is a promising anode material in Na-ion batteries, however, there are still no theoretical studies describing the Na storage mechanism within this material. In this work, we present a density functional theory study on the effects of interstitial and substitutional Na atoms on the electronic and structural properties of hydrogen-passivated porous silicon (pSiH). The results show that the substitutional Na reduces the band gap, while the interstitial Na induces metallic properties on the pSiH. The diffusion analysis by the nudged elastic band scheme, reveals that the interstitial Na atoms migrate from the silicon lattice to the pore surface, while the pSiH energy barrier decreases by 20.42% relative to the bulk silicon energy barrier value. Finally, the hydrogenated surface proves to be beneficial for both Na adsorption and diffusion. These results could be important for understanding the storage and diffusion mechanism of Na on pSiH .},
keywords = {DFT, Na-batteries, NEB, porous silicon},
pubstate = {published},
tppubtype = {article}
}
Arellano, Lucia Guadalupe; Santiago, Francisco De; Miranda, Álvaro; Pérez, Luis Antonio; Salazar, Fernando; Trejo, Alejandro; Nakamura, Jun; Cruz-Irisson, Miguel
Ab initio study of hydrogen storage on metal-decorated GeC monolayers Artículo de revista
En: International Journal of Hydrogen Energy, vol. 46, no 57, pp. 29261-29271, 2021, ISSN: 0360-3199, (HYDROGEN ENERGY SYSTEMS).
Resumen | Enlaces | BibTeX | Etiquetas: 2D materials, Alkali metals, DFT, Germanium carbide, Hydrogen storage, Renewable energy
@article{ARELLANO202129261,
title = {Ab initio study of hydrogen storage on metal-decorated GeC monolayers},
author = {Lucia Guadalupe Arellano and Francisco De Santiago and \'{A}lvaro Miranda and Luis Antonio P\'{e}rez and Fernando Salazar and Alejandro Trejo and Jun Nakamura and Miguel Cruz-Irisson},
url = {https://www.sciencedirect.com/science/article/pii/S036031992101555X},
doi = {https://doi.org/10.1016/j.ijhydene.2021.04.135},
issn = {0360-3199},
year = {2021},
date = {2021-01-01},
journal = {International Journal of Hydrogen Energy},
volume = {46},
number = {57},
pages = {29261-29271},
abstract = {Bidimensional nanostructures have been proposed as hydrogen-storage systems owing to their large surface-to-volume ratios. Germanium carbide monolayers (GeC-MLs) can offer attractive opportunities for H2 adsorption compared to graphene. However, this possibility has not been explored in detail. In this work, the adsorption of H2 molecules on GeC-MLs decorated with alkali metal (AM) and alkaline earth metal (AEM) adatoms was investigated using the density functional theory. Results showed that the AM adatoms were chemisorbed on the GeC-ML, whereas AEM adatoms were physisorbed. The H2 molecules presented negligible adsorption energies on the weakly adsorbed AEM adatoms. Conversely, the AM adatoms improved the H2 adsorption, possibly due to a large charge transfer from the adatoms to the GeC-ML. The potassium-decorated GeC-ML exhibited the most optimal H2 storage capacity, adsorbing up to six molecules and with a lower possibility of forming metal clusters than the other studied cases. These results may aid in the development of new efficient hydrogen-storage materials.},
note = {HYDROGEN ENERGY SYSTEMS},
keywords = {2D materials, Alkali metals, DFT, Germanium carbide, Hydrogen storage, Renewable energy},
pubstate = {published},
tppubtype = {article}
}
Sosa, Akari Narayama; Cid, Brandom Jhoseph; Miranda, Álvaro; Pérez, Luis Antonio; Salazar, Fernando; Trejo, Alejandro; Cruz-Irisson, Miguel
Light metal functionalized two-dimensional siligene for high capacity hydrogen storage: DFT study Artículo de revista
En: International Journal of Hydrogen Energy, vol. 46, no 57, pp. 29348-29360, 2021, ISSN: 0360-3199, (HYDROGEN ENERGY SYSTEMS).
Resumen | Enlaces | BibTeX | Etiquetas: 2D materials, Alkali metals, DFT, Hydrogen storage, Renewable energy, Siligene
@article{SOSA202129348,
title = {Light metal functionalized two-dimensional siligene for high capacity hydrogen storage: DFT study},
author = {Akari Narayama Sosa and Brandom Jhoseph Cid and \'{A}lvaro Miranda and Luis Antonio P\'{e}rez and Fernando Salazar and Alejandro Trejo and Miguel Cruz-Irisson},
url = {https://www.sciencedirect.com/science/article/pii/S0360319920340246},
doi = {https://doi.org/10.1016/j.ijhydene.2020.10.175},
issn = {0360-3199},
year = {2021},
date = {2021-01-01},
journal = {International Journal of Hydrogen Energy},
volume = {46},
number = {57},
pages = {29348-29360},
abstract = {In this work, the hydrogen storage capacities of two-dimensional siligene (2D-SiGe) functionalized with alkali metal (AM) and alkali-earth metal (AEM) atoms were studied using density functional theory calculations. One AM (Li, Na, K) or AEM (Be, Mg, Ca) atom was placed on the 2D-SiGe surface, and several H2 molecules were placed in the vicinity of the adatom. The results demonstrate that the most favorable siligene site for the adsorption of Li, Na, K and Be atoms is the hollow site, while for the Mg and Ca atoms is the down site. The AM atoms are the only ones with considerable binding energies on the SiGe nanosheets. Pristine 2D-SiGe slightly adsorbs one H2 molecule per hollow site and, therefore, it is not suitable for hydrogen storage. In some of the AM- and AEM-decorated 2D-SiGe, several hydrogen molecules can be physisorbed. In particular, the Na-, K- and Ca-functionalized 2D-SiGe can adsorb six hydrogen molecules, whereas Li and Mg atoms adsorbed three hydrogen molecules, and the Be adatom only adsorbed one hydrogen molecule. The complexes formed by hydrogen molecules adsorbed on the analyzed metal decorated 2D-SiGe are energetically stable, indicating that functionalized 2D-SiGe could be an efficient molecular hydrogen storage media.},
note = {HYDROGEN ENERGY SYSTEMS},
keywords = {2D materials, Alkali metals, DFT, Hydrogen storage, Renewable energy, Siligene},
pubstate = {published},
tppubtype = {article}
}
Arellano, Lucía G.; Santiago, Francisco; Miranda, Álvaro; Salazar, Fernando; Trejo, Alejandro; Pérez, Luis A.; Cruz-Irisson, Miguel
Hydrogen storage capacities of alkali and alkaline-earth metal atoms on SiC monolayer: A first-principles study Artículo de revista
En: International Journal of Hydrogen Energy, vol. 46, no 38, pp. 20266-20279, 2021, ISSN: 0360-3199, (International Journal of Hydrogen Energy Special Issue devoted to the 32nd International Conference ECOS 2019).
Resumen | Enlaces | BibTeX | Etiquetas: 2D monolayers, Adsorption energy, DFT, Hydrogen storage, Silicon carbide
@article{ARELLANO202120266,
title = {Hydrogen storage capacities of alkali and alkaline-earth metal atoms on SiC monolayer: A first-principles study},
author = {Luc\'{i}a G. Arellano and Francisco Santiago and \'{A}lvaro Miranda and Fernando Salazar and Alejandro Trejo and Luis A. P\'{e}rez and Miguel Cruz-Irisson},
url = {https://www.sciencedirect.com/science/article/pii/S0360319920310144},
doi = {https://doi.org/10.1016/j.ijhydene.2020.03.078},
issn = {0360-3199},
year = {2021},
date = {2021-01-01},
journal = {International Journal of Hydrogen Energy},
volume = {46},
number = {38},
pages = {20266-20279},
abstract = {A detailed theoretical Density-Functional-Theory-based investigation of hydrogen adsorption on silicon carbide monolayers (SiC-ML) decorated with alkali and alkaline-earth metal atoms is presented. The results show that the favourable position for all adsorbed metal atoms is above a Si atom. These metal atoms are chemisorbed to the SiC-ML, except for Mg which is physisorbed. The adsorbed atoms act in turn as adsorption sites for H2 molecules. The single-sided K-functionalized SiC-ML can store up to six H2 molecules. For double-side K-decorated SiC-ML, up to ten H2 molecules can be captured. In all cases, the H2 molecules are physisorbed. This is beneficial because the breaking of chemical bonds, which otherwise would be needed to make use of the stored H2, is energetically expensive. These results find decorated SiC-ML as a promising material for hydrogen storage systems.},
note = {International Journal of Hydrogen Energy Special Issue devoted to the 32nd International Conference ECOS 2019},
keywords = {2D monolayers, Adsorption energy, DFT, Hydrogen storage, Silicon carbide},
pubstate = {published},
tppubtype = {article}
}
Ornelas-Cruz, I.; Trejo, A.; Oviedo-Roa, R.; Salazar, F.; Carvajal, E.; Miranda, A.; Cruz-Irisson, M.
DFT-based study of the bulk tin mixed-halide CsSnI3-xBrx perovskite Artículo de revista
En: Computational Materials Science, vol. 178, pp. 109619, 2020, ISSN: 0927-0256.
Resumen | Enlaces | BibTeX | Etiquetas: DFT, Metal-halide, Mixed-halide, Perovskite, Photovoltaic
@article{ORNELASCRUZ2020109619,
title = {DFT-based study of the bulk tin mixed-halide CsSnI3-xBrx perovskite},
author = {I. Ornelas-Cruz and A. Trejo and R. Oviedo-Roa and F. Salazar and E. Carvajal and A. Miranda and M. Cruz-Irisson},
url = {https://www.sciencedirect.com/science/article/pii/S0927025620301105},
doi = {https://doi.org/10.1016/j.commatsci.2020.109619},
issn = {0927-0256},
year = {2020},
date = {2020-01-01},
journal = {Computational Materials Science},
volume = {178},
pages = {109619},
abstract = {Metal-halide perovskites compounds, such as CsSnX3 (X = halogen), have attracted a lot of attention as a photovoltaic material due to their astonishing optoelectronic properties, nevertheless, the improvement of its efficiency is still an issue. It has been observed that the mixing of halogens in the perovskite structure increases the compound stability. However, theoretical studies of the effects of this mixing are scarce; by understanding the most stable mixing positions it would be possible to enhance the stability of these structures, which in turn it would help to enhance the performance of a perovskite-based photovoltaic device. Thus, a Density Functional Theory study was performed on the CsSnI3-xBrx perovskite as a function of the bromine concentration (0 ≤ x ≤ 3). The distortions of the octahedral array and the energy gap of each system studied are highly dependent on the position of bromine atoms within the unit-cell. It was observed that stable compounds could be found at x = 0.5, 1.0, and 2.0 due to the strengthening of the metal-halogen bonds. These results could explain the literature-reported enhance of the performance, as a photovoltaic material, of CsSnI3-xBrx with respect to CsSnI3. Besides, non-covalent interactions between halogens and Cs atoms were found. Different energies attributed to such interactions were calculated and revealed that the off-centering of Cs atoms are driven by the countering effect of the I-(1−δ)-Sn-Br-(1+δ) polar bonds within CsSnI3-xBrx. These results give an insight of the properties of the CsSnI3-xBrx alloy and its stability which could be beneficial to the rising field of perovskite photovoltaics.},
keywords = {DFT, Metal-halide, Mixed-halide, Perovskite, Photovoltaic},
pubstate = {published},
tppubtype = {article}
}
González, Israel; Santiago, Francisco De; Arellano, Lucía G.; Miranda, Álvaro; Trejo, Alejandro; Salazar, Fernando; Cruz-Irisson, Miguel
Theoretical modelling of porous silicon decorated with metal atoms for hydrogen storage Artículo de revista
En: International Journal of Hydrogen Energy, vol. 45, no 49, pp. 26321-26333, 2020, ISSN: 0360-3199, (Progress in Hydrogen Production and Utilization).
Resumen | Enlaces | BibTeX | Etiquetas: Beryllium, DFT, Hydrogen storage, Lithium, Palladium, porous silicon
@article{GONZALEZ202026321,
title = {Theoretical modelling of porous silicon decorated with metal atoms for hydrogen storage},
author = {Israel Gonz\'{a}lez and Francisco De Santiago and Luc\'{i}a G. Arellano and \'{A}lvaro Miranda and Alejandro Trejo and Fernando Salazar and Miguel Cruz-Irisson},
url = {https://www.sciencedirect.com/science/article/pii/S0360319920318784},
doi = {https://doi.org/10.1016/j.ijhydene.2020.05.097},
issn = {0360-3199},
year = {2020},
date = {2020-01-01},
journal = {International Journal of Hydrogen Energy},
volume = {45},
number = {49},
pages = {26321-26333},
abstract = {There is experimental evidence suggesting that metal adatoms enhance the physisorption of hydrogen molecules in porous silicon. However, theoretical reports about the physical properties for this material to be suitable for hydrogen storage are scarce. Thus, in this work we employ Density Functional Theory to study the effects of decoration with metals on the hydrogen-adsorption properties on hydrogen-passivated porous silicon. The results indicate that lithium and palladium decorating atoms are strongly bonded to the porous silicon\textemdashpreventing the adverse effects of clusterization\textemdashwhile beryllium is not. Lithium and palladium exhibit physisorption capacity up to 5 and 4 hydrogen molecules per adatom, respectively. In contrast, adsorption of hydrogen molecules in beryllium is too weak as the adatom is not chemisorbed on the surface of the pore. The hydrogen passivation of the pore surface proves to be beneficial for a strong chemisorption of the decorating atoms.},
note = {Progress in Hydrogen Production and Utilization},
keywords = {Beryllium, DFT, Hydrogen storage, Lithium, Palladium, porous silicon},
pubstate = {published},
tppubtype = {article}
}
© 2022 Grupo de Investigación en Nanociencias de ESIME Culhuacan | All Rights Reserved. | Hecho por Vleeko Agencia de Marketing Digital CDMX
¡Escríbenos!