El Dr. Fernando Salazar Posadas es egresado del Instituto de Física “Manuel Sandoval Vallarta” de la Facultad de Ciencias de la Universidad Autónoma de San Luis Potosí. Su trabajo de investigación doctoral lo desarrolló en el Instituto de Investigaciones en Materiales de la UNAM, posteriormente realizó una estancia posdoctoral en el Instituto de Física de la UNAM. Actualmente está adscrito a la Sección de Estudios de Posgrado e Investigación de la Escuela Superior de Ingeniería Mecánica y Eléctrica, unidad Culhuacán del Instituto Politécnico Nacional. Su trabajo de investigación lo desarrolla con el Grupo de Investigación en Nanociencias, en donde se investigan las propiedades físicas y químicas de nanomateriales con modelos y simulación computacional usando la Teoría del Funcional de la Densidad. Estas investigaciones, se aplican para mejorar diferentes sistemas energéticos como las celdas fotovoltaicas, detección de moléculas tóxicas, almacenamiento de hidrógeno, almacenamiento de energía en baterías recargables. En particular, el Dr. Salazar es responsable de desarrollar el modelado teórico, simulación computacional y diseño de electrodos nanoestructurados para su aplicación en baterías recargables. Pertenece al Sistema Nacional de Investigadores del CONACyT desde 2010, es miembro de la Sociedad Mexicana de Física y de la División de Estado Sólido desde 2014. Sus actividades como docente incluyen cursos de matemáticas y física en las carreras de ingeniería y en los programas de posgrado de la ESIME Culhuacán. Ha dirigido dos tesis de licenciatura y nueve en el programa Maestría en Ciencias de Ingeniería en Sistemas Energéticos. Actualmente dirige tres tesis de licenciatura, tres tesis de maestría y una tesis de doctorado en el programa de Doctorado en Energía. En su trayectoria de investigación tiene 29 publicaciones en revistas internacionales, donde se estudian las propiedades electrónicas, mecánicas, vibracionales y de transporte electrónico y térmico de materiales nanoestructurados y sus posibles aplicaciones para mejorar sistemas energéticos. El Dr. Fernando Salazar es actualmente el coordinador del programa Doctorado en Energía de la sede ESIME-Culhuacán, cargo que le fue asignado el 16 de septiembre de 2020.
Enlaces en plataformas académicas
Bermeo-Campos, R.; Madrigal-Carrillo, K.; Perez-Figueroa, S. E.; Calvino, M.; Trejo, A.; Salazar, F.; Miranda, A.; Cruz-Irisson, M.
Surface morphology effects on the mechanical and electronic properties of halogenated porous 3C-SiC: A DFT study Artículo de revista
En: Applied Surface Science, vol. 631, pp. 157481, 2023, ISSN: 0169-4332.
Resumen | Enlaces | BibTeX | Etiquetas: DFT, electronic properties, Halogens, Mechanical properties, Porous SiC
@article{BERMEOCAMPOS2023157481,
title = {Surface morphology effects on the mechanical and electronic properties of halogenated porous 3C-SiC: A DFT study},
author = {R. Bermeo-Campos and K. Madrigal-Carrillo and S. E. Perez-Figueroa and M. Calvino and A. Trejo and F. Salazar and A. Miranda and M. Cruz-Irisson},
url = {https://www.sciencedirect.com/science/article/pii/S0169433223011595},
doi = {https://doi.org/10.1016/j.apsusc.2023.157481},
issn = {0169-4332},
year = {2023},
date = {2023-01-01},
journal = {Applied Surface Science},
volume = {631},
pages = {157481},
abstract = {Silicon carbide nanostructures have been widely studied due to their potential technological applications. However, the theoretical characterization, especially the effect of the surface on the mechanical properties of this material is still underexplored. In this work, we report the electronic and mechanical properties of 3C-SiC nanopores with different pore surfaces and different passivation schemes using a density functional theory approach and the supercell technique. The nanopores were modeled by removing columns of atoms in the [001] direction, thus creating four types of pores, two with an Only C or Si pore and two with a C or Si-Rich pore surface. All surfaces were passivated with hydrogen, then some atoms of H were replaced with fluorine and chlorine. Results show that pores with a higher concentration of C on the surface have a larger bandgap compared with the Si cases. Moreover, only a few changes can be observed due to passivation. For the mechanical properties the Bulk and Young’s modulus were calculated and show that the Only C structures were the most brittle and, for almost all the pores, the H + Cl passivation improve the Bulk modulus.},
keywords = {DFT, electronic properties, Halogens, Mechanical properties, Porous SiC},
pubstate = {published},
tppubtype = {article}
}
© 2022 Grupo de Investigación en Nanociencias de ESIME Culhuacan | All Rights Reserved. | Hecho por Vleeko Agencia de Marketing Digital CDMX
¡Escríbenos!