Obtuvo la Licenciatura en Física, la Maestría y el Doctorado en Ciencia e Ingeniería de Materiales en la UNAM. Es Profesor Titular C en el Instituto Politécnico Nacional en la ESIME-Culhuacan, donde formó y coordina el Grupo de Investigación en Nanociencias. Pertenece al Sistema Nacional de Investigadores (SNI)-Nivel 3, ha dirigido 16 tesis doctorales, una estancia sabática, una posdoctoral y tres estancias de investigación en el programa de retención del CONACyT, 16 tesis doctorales, 29 tesis de maestría y 11 de licenciatura, tres de las cuales han obtenido el premio a la mejor tesis de maestría y de doctorado en el IPN y un premio a la mejor tesis doctoral por parte de la UNAM. Ha publicado 121 artículos en revistas internacionales indizadas en el Journal Citation Reports con un alto factor de impacto, así como 37 artículos in extenso como memorias de congresos. Sus trabajos de investigación se han presentado en más de 250 congresos nacionales e internacionales de reconocida calidad académica. Se ha desempeñado como revisor en revistas internacionales como Applied Surface Science, Nanoscale, Physica E, Physica B, Physica Status Solidi (b) así como el Journal of Energy Storage por citar algunas. Adicionalmente ha sido Responsable Técnico de proyectos financiados por el CONACyT, el ICyTDF y el IPN, además ha coordinado varios proyectos multidisciplinarios en el IPN. Fue Presidente de la División de Estado Sólido de la Sociedad Mexicana de Física. Pertenece a la Academia Mexicana de Ciencias. En su trayectoria docente en el IPN, participó en la creación de la carrera de Ingeniería en Computación, así como la Maestría en Ciencias de Ingeniería en Sistemas Energéticoas y fue Coordinador del Doctorado en Comunicaciones y Electrónica a este último se le otorgó la categoría de programa de Competencia Internacional como resultad ode la evaluación en el Programa Nacional de Posgrados de Calidad (PNPC) del CONACyT. Una de sus líneas de investigación son las propiedades electrónicas, ópticas y vibracionales de semiconductores nanoestructurados con aplicaciones en comunicaciones y electrónica, así como en el almacenamiento y conversión de energía.
Bermeo-Campos, R.; Madrigal-Carrillo, K.; Perez-Figueroa, S. E.; Calvino, M.; Trejo, A.; Salazar, F.; Miranda, A.; Cruz-Irisson, M.
Surface morphology effects on the mechanical and electronic properties of halogenated porous 3C-SiC: A DFT study Artículo de revista
En: Applied Surface Science, vol. 631, pp. 157481, 2023, ISSN: 0169-4332.
Resumen | Enlaces | BibTeX | Etiquetas: DFT, electronic properties, Halogens, Mechanical properties, Porous SiC
@article{BERMEOCAMPOS2023157481,
title = {Surface morphology effects on the mechanical and electronic properties of halogenated porous 3C-SiC: A DFT study},
author = {R. Bermeo-Campos and K. Madrigal-Carrillo and S. E. Perez-Figueroa and M. Calvino and A. Trejo and F. Salazar and A. Miranda and M. Cruz-Irisson},
url = {https://www.sciencedirect.com/science/article/pii/S0169433223011595},
doi = {https://doi.org/10.1016/j.apsusc.2023.157481},
issn = {0169-4332},
year = {2023},
date = {2023-01-01},
journal = {Applied Surface Science},
volume = {631},
pages = {157481},
abstract = {Silicon carbide nanostructures have been widely studied due to their potential technological applications. However, the theoretical characterization, especially the effect of the surface on the mechanical properties of this material is still underexplored. In this work, we report the electronic and mechanical properties of 3C-SiC nanopores with different pore surfaces and different passivation schemes using a density functional theory approach and the supercell technique. The nanopores were modeled by removing columns of atoms in the [001] direction, thus creating four types of pores, two with an Only C or Si pore and two with a C or Si-Rich pore surface. All surfaces were passivated with hydrogen, then some atoms of H were replaced with fluorine and chlorine. Results show that pores with a higher concentration of C on the surface have a larger bandgap compared with the Si cases. Moreover, only a few changes can be observed due to passivation. For the mechanical properties the Bulk and Young’s modulus were calculated and show that the Only C structures were the most brittle and, for almost all the pores, the H + Cl passivation improve the Bulk modulus.},
keywords = {DFT, electronic properties, Halogens, Mechanical properties, Porous SiC},
pubstate = {published},
tppubtype = {article}
}
© 2022 Grupo de Investigación en Nanociencias de ESIME Culhuacan | All Rights Reserved. | Hecho por Vleeko Agencia de Marketing Digital CDMX
¡Escríbenos!