Obtuvo la Licenciatura en Física, la Maestría y el Doctorado en Ciencia e Ingeniería de Materiales en la UNAM. Es Profesor Titular C en el Instituto Politécnico Nacional en la ESIME-Culhuacan, donde formó y coordina el Grupo de Investigación en Nanociencias. Pertenece al Sistema Nacional de Investigadores (SNI)-Nivel 3, ha dirigido 16 tesis doctorales, una estancia sabática, una posdoctoral y tres estancias de investigación en el programa de retención del CONACyT, 16 tesis doctorales, 29 tesis de maestría y 11 de licenciatura, tres de las cuales han obtenido el premio a la mejor tesis de maestría y de doctorado en el IPN y un premio a la mejor tesis doctoral por parte de la UNAM. Ha publicado 121 artículos en revistas internacionales indizadas en el Journal Citation Reports con un alto factor de impacto, así como 37 artículos in extenso como memorias de congresos. Sus trabajos de investigación se han presentado en más de 250 congresos nacionales e internacionales de reconocida calidad académica. Se ha desempeñado como revisor en revistas internacionales como Applied Surface Science, Nanoscale, Physica E, Physica B, Physica Status Solidi (b) así como el Journal of Energy Storage por citar algunas. Adicionalmente ha sido Responsable Técnico de proyectos financiados por el CONACyT, el ICyTDF y el IPN, además ha coordinado varios proyectos multidisciplinarios en el IPN. Fue Presidente de la División de Estado Sólido de la Sociedad Mexicana de Física. Pertenece a la Academia Mexicana de Ciencias. En su trayectoria docente en el IPN, participó en la creación de la carrera de Ingeniería en Computación, así como la Maestría en Ciencias de Ingeniería en Sistemas Energéticoas y fue Coordinador del Doctorado en Comunicaciones y Electrónica a este último se le otorgó la categoría de programa de Competencia Internacional como resultad ode la evaluación en el Programa Nacional de Posgrados de Calidad (PNPC) del CONACyT. Una de sus líneas de investigación son las propiedades electrónicas, ópticas y vibracionales de semiconductores nanoestructurados con aplicaciones en comunicaciones y electrónica, así como en el almacenamiento y conversión de energía.
González, I.; Nava, R.; Cruz-Irisson, M.; Río, J. A.; Ornelas-Cruz, I.; Pilo, J.; Rubo, Y. G.; Trejo, A.; Tagüeña, J.
First-principles study of interstitial Li effects on the electronic, structural and diffusion properties of highly boron-doped porous silicon Artículo de revista
En: Journal of Energy Storage, vol. 102, pp. 114087, 2024, ISSN: 2352-152X.
Resumen | Enlaces | BibTeX | Etiquetas: B-doping, Bulk modulus, Diffusion path, electronic properties, Li-ion battery, porous silicon
@article{GONZALEZ2024114087,
title = {First-principles study of interstitial Li effects on the electronic, structural and diffusion properties of highly boron-doped porous silicon},
author = {I. Gonz\'{a}lez and R. Nava and M. Cruz-Irisson and J. A. R\'{i}o and I. Ornelas-Cruz and J. Pilo and Y. G. Rubo and A. Trejo and J. Tag\"{u}e\~{n}a},
url = {https://www.sciencedirect.com/science/article/pii/S2352152X24036739},
doi = {https://doi.org/10.1016/j.est.2024.114087},
issn = {2352-152X},
year = {2024},
date = {2024-01-01},
urldate = {2024-01-01},
journal = {Journal of Energy Storage},
volume = {102},
pages = {114087},
abstract = {Silicon-based anodes for Li-ion batteries have been the subject of intense research due to their high storage capacity, low working potential, and abundant resources. Nevertheless, the low electrical conductivity, large volume changes and slow Li ion diffusivity in silicon have hampered its performance. In this work, we modelled B-doped porous silicon passivated with hydrogen to analyse the effect of interstitial Li atoms on its electronic, structural, and diffusion properties by the density functional theory (DFT). Results show that high boron doping induces metallic properties in porous silicon, which are also improved by interstitial Li atoms. The metallic behaviour of porous Si is detailed by the calculations of the effective masses and the Fermi surfaces. Conversely, the B atoms produce volumetric compression, which partially compensates for the volumetric expansion generated by the interstitial Li atoms. Furthermore, the bulk moduli of the B-doped porous structure and the B-doped porous structure with the highest Li concentration here considered show a variation of 0.2 % and 0.37 %, respectively. These results suggest that the addition of large amounts of B and Li atoms slightly reduces the hydrostatic compressive strength of the porous silicon. Finally, we found that the dopant contributes to the asymmetric Li diffusion activation since the energy barrier of 0.86 eV must be overcome when Li migration occurs from the interior to the edge of the wall. In contrast, in the opposite direction, the energy barrier increases to 1.43 eV. This implies that the Li atom could preferentially be stored in the pore surface area.},
keywords = {B-doping, Bulk modulus, Diffusion path, electronic properties, Li-ion battery, porous silicon},
pubstate = {published},
tppubtype = {article}
}
Bermeo-Campos, R.; Madrigal-Carrillo, K.; Perez-Figueroa, S. E.; Calvino, M.; Trejo, A.; Salazar, F.; Miranda, A.; Cruz-Irisson, M.
Surface morphology effects on the mechanical and electronic properties of halogenated porous 3C-SiC: A DFT study Artículo de revista
En: Applied Surface Science, vol. 631, pp. 157481, 2023, ISSN: 0169-4332.
Resumen | Enlaces | BibTeX | Etiquetas: DFT, electronic properties, Halogens, Mechanical properties, Porous SiC
@article{BERMEOCAMPOS2023157481,
title = {Surface morphology effects on the mechanical and electronic properties of halogenated porous 3C-SiC: A DFT study},
author = {R. Bermeo-Campos and K. Madrigal-Carrillo and S. E. Perez-Figueroa and M. Calvino and A. Trejo and F. Salazar and A. Miranda and M. Cruz-Irisson},
url = {https://www.sciencedirect.com/science/article/pii/S0169433223011595},
doi = {https://doi.org/10.1016/j.apsusc.2023.157481},
issn = {0169-4332},
year = {2023},
date = {2023-01-01},
journal = {Applied Surface Science},
volume = {631},
pages = {157481},
abstract = {Silicon carbide nanostructures have been widely studied due to their potential technological applications. However, the theoretical characterization, especially the effect of the surface on the mechanical properties of this material is still underexplored. In this work, we report the electronic and mechanical properties of 3C-SiC nanopores with different pore surfaces and different passivation schemes using a density functional theory approach and the supercell technique. The nanopores were modeled by removing columns of atoms in the [001] direction, thus creating four types of pores, two with an Only C or Si pore and two with a C or Si-Rich pore surface. All surfaces were passivated with hydrogen, then some atoms of H were replaced with fluorine and chlorine. Results show that pores with a higher concentration of C on the surface have a larger bandgap compared with the Si cases. Moreover, only a few changes can be observed due to passivation. For the mechanical properties the Bulk and Young’s modulus were calculated and show that the Only C structures were the most brittle and, for almost all the pores, the H + Cl passivation improve the Bulk modulus.},
keywords = {DFT, electronic properties, Halogens, Mechanical properties, Porous SiC},
pubstate = {published},
tppubtype = {article}
}
Sosa, Akari Narayama; González, Israel; Trejo, Alejandro; Miranda, Álvaro; Salazar, Fernando; Cruz-Irisson, Miguel
Effects of lithium on the electronic properties of porous Ge as anode material for batteries Artículo de revista
En: Journal of Computational Chemistry, vol. 41, no 31, pp. 2653-2662, 2020.
Resumen | Enlaces | BibTeX | Etiquetas: Density Functional Theory, electronic properties, Li-ion batteries, porous germanium, transition state
@article{https://doi.org/10.1002/jcc.26421,
title = {Effects of lithium on the electronic properties of porous Ge as anode material for batteries},
author = {Akari Narayama Sosa and Israel Gonz\'{a}lez and Alejandro Trejo and \'{A}lvaro Miranda and Fernando Salazar and Miguel Cruz-Irisson},
url = {https://onlinelibrary.wiley.com/doi/abs/10.1002/jcc.26421},
doi = {https://doi.org/10.1002/jcc.26421},
year = {2020},
date = {2020-01-01},
journal = {Journal of Computational Chemistry},
volume = {41},
number = {31},
pages = {2653-2662},
abstract = {Abstract Recently, the need of improvement of energy storage has led to the development of Lithium batteries with porous materials as electrodes. Porous Germanium (pGe) has shown promise for the development of new generation Li-ion batteries due to its excellent electronic, and chemical properties, however, the effect of lithium in its properties has not been studied extensively. In this contribution, the effect of surface and interstitial Li on the electronic properties of pGe was studied using a first-principles density functional theory scheme. The porous structures were modeled by removing columns of atoms in the [001] direction and the surface dangling bonds were passivated with H atoms, and then replaced with Li atoms. Also, the effect of a single interstitial Li in the Ge was analyzed. The transition state and the diffusion barrier of the Li in the Ge structure were studied using a quadratic synchronous transit scheme.},
keywords = {Density Functional Theory, electronic properties, Li-ion batteries, porous germanium, transition state},
pubstate = {published},
tppubtype = {article}
}
Santiago, F. De; González, J. E.; Miranda, A.; Trejo, A.; Salazar, F.; Pérez, L. A.; Cruz-Irisson, M.
Lithiation effects on the structural and electronic properties of Si nanowires as a potential anode material Artículo de revista
En: Energy Storage Materials, vol. 20, pp. 438-445, 2019, ISSN: 2405-8297.
Resumen | Enlaces | BibTeX | Etiquetas: electronic properties, Li batteries, Silicon nanowires, Young's modulus
@article{DESANTIAGO2019438,
title = {Lithiation effects on the structural and electronic properties of Si nanowires as a potential anode material},
author = {F. De Santiago and J. E. Gonz\'{a}lez and A. Miranda and A. Trejo and F. Salazar and L. A. P\'{e}rez and M. Cruz-Irisson},
url = {https://www.sciencedirect.com/science/article/pii/S2405829718313254},
doi = {https://doi.org/10.1016/j.ensm.2019.04.023},
issn = {2405-8297},
year = {2019},
date = {2019-01-01},
journal = {Energy Storage Materials},
volume = {20},
pages = {438-445},
abstract = {The need for better energy-storage materials has attracted much attention to the development of Li-ion battery electrodes. Si nanowires have been considered as alternative electrodes, however the effects of Li on their electronic band gap and mechanical properties have been scarcely studied. In this work, a density functional study of the electronic and mechanical properties of hydrogen passivated silicon nanowires (H-SiNWs) grown along the [001] direction is presented. The Li atoms are gradually inserted at interstitial positions or replacing surface H atoms. The results show that, for surface-lithiated H-SiNWs, the semiconducting band gap decreases when the concentration of Li atoms increases; whereas the H-SiNWs become metallic even with the addition of only one interstitial Li atom. The formation energy diminishes with the concentration of Li atoms for surface-lithiated H-SiNWs, whereas the contrary behavior is found in the interstitial-lithiated H-SiNWs. Furthermore, for the surface-lithiation case, the Li binding energy reveals the existence of SiLi bonds, whereas for the interstitial-lithiation case, the Li binding energy increases when the Li grows up to a critical concentration, where some SiSi bonds break. Finally, for the case of surface-lithiation, the Young's modulus (Y) increases with the concentration of Li, whereas for the interstitial-lithiation case, Y suffers a sudden diminution at a certain Li concentration due to the large internal mechanical stresses within the nanowire structure. These results should be considered when regarding H-SiNWs as potential electrodes in Li-ion battery anodes.},
keywords = {electronic properties, Li batteries, Silicon nanowires, Young's modulus},
pubstate = {published},
tppubtype = {article}
}
Pilo, J.; Trejo, A.; Carvajal, E.; Oviedo-Roa, R.; Cruz-Irisson, M.; Navarro, O.
Effect of the transition metal ratio on bulk and thin slab double perovskite Sr2FeMoO6 Artículo de revista
En: Microelectronic Engineering, vol. 162, pp. 110-113, 2016, ISSN: 0167-9317.
Resumen | Enlaces | BibTeX | Etiquetas: Density Functional Theory, electronic properties, Magnetic properties, Perovskites, Thin slabs
@article{PILO2016110,
title = {Effect of the transition metal ratio on bulk and thin slab double perovskite Sr2FeMoO6},
author = {J. Pilo and A. Trejo and E. Carvajal and R. Oviedo-Roa and M. Cruz-Irisson and O. Navarro},
url = {https://www.sciencedirect.com/science/article/pii/S0167931716302283},
doi = {https://doi.org/10.1016/j.mee.2016.04.026},
issn = {0167-9317},
year = {2016},
date = {2016-01-01},
journal = {Microelectronic Engineering},
volume = {162},
pages = {110-113},
abstract = {Double perovskites are promising materials for multiple applications on microelectronics, specially on magnetic devices development. Perhaps the most interesting one is the double perovskite Sr2FeMoO6 since its magnetic properties differ from that of other related simple perovskites: SrFeO3 and SrMoO3. In this work the evolution of the electronic properties and the magnetic moment distribution as a function of the Fe/Mo ratio in bulk and a thin slab of Sr2FeMoO6 was studied. The thin slab was constructed keeping free surfaces parallel to the (001) crystalline planes with different thickness and compositions. All calculations were made in the Density Functional Theory scheme in the Generalized Gradient Approximation, using the Perdew-Burke-Ernzerhof functional, as implemented in the DMol3 code. After being geometry optimized, the electronic Density of States and band structure were calculated, as well as the magnetic moment distribution, for each modeled system. Essential results are as follows: for the bulk cases it was found that half-metallic behavior which characterizes the stoichiometric double perovskite changes if the compound becomes molybdenum or iron rich; for the slab is remarkable the induction of magnetic moments, owed to the corresponding to iron atoms, over their neighbor atoms.},
keywords = {Density Functional Theory, electronic properties, Magnetic properties, Perovskites, Thin slabs},
pubstate = {published},
tppubtype = {article}
}
© 2022 Grupo de Investigación en Nanociencias de ESIME Culhuacan | All Rights Reserved. | Hecho por Vleeko Agencia de Marketing Digital CDMX
¡Escríbenos!