Obtuvo la Licenciatura en Física, la Maestría y el Doctorado en Ciencia e Ingeniería de Materiales en la UNAM. Es Profesor Titular C en el Instituto Politécnico Nacional en la ESIME-Culhuacan, donde formó y coordina el Grupo de Investigación en Nanociencias. Pertenece al Sistema Nacional de Investigadores (SNI)-Nivel 3, ha dirigido 16 tesis doctorales, una estancia sabática, una posdoctoral y tres estancias de investigación en el programa de retención del CONACyT, 16 tesis doctorales, 29 tesis de maestría y 11 de licenciatura, tres de las cuales han obtenido el premio a la mejor tesis de maestría y de doctorado en el IPN y un premio a la mejor tesis doctoral por parte de la UNAM. Ha publicado 121 artículos en revistas internacionales indizadas en el Journal Citation Reports con un alto factor de impacto, así como 37 artículos in extenso como memorias de congresos. Sus trabajos de investigación se han presentado en más de 250 congresos nacionales e internacionales de reconocida calidad académica. Se ha desempeñado como revisor en revistas internacionales como Applied Surface Science, Nanoscale, Physica E, Physica B, Physica Status Solidi (b) así como el Journal of Energy Storage por citar algunas. Adicionalmente ha sido Responsable Técnico de proyectos financiados por el CONACyT, el ICyTDF y el IPN, además ha coordinado varios proyectos multidisciplinarios en el IPN. Fue Presidente de la División de Estado Sólido de la Sociedad Mexicana de Física. Pertenece a la Academia Mexicana de Ciencias. En su trayectoria docente en el IPN, participó en la creación de la carrera de Ingeniería en Computación, así como la Maestría en Ciencias de Ingeniería en Sistemas Energéticoas y fue Coordinador del Doctorado en Comunicaciones y Electrónica a este último se le otorgó la categoría de programa de Competencia Internacional como resultad ode la evaluación en el Programa Nacional de Posgrados de Calidad (PNPC) del CONACyT. Una de sus líneas de investigación son las propiedades electrónicas, ópticas y vibracionales de semiconductores nanoestructurados con aplicaciones en comunicaciones y electrónica, así como en el almacenamiento y conversión de energía.
Santiago, F. De; González, J. E.; Miranda, A.; Trejo, A.; Salazar, F.; Pérez, L. A.; Cruz-Irisson, M.
Lithiation effects on the structural and electronic properties of Si nanowires as a potential anode material Artículo de revista
En: Energy Storage Materials, vol. 20, pp. 438-445, 2019, ISSN: 2405-8297.
Resumen | Enlaces | BibTeX | Etiquetas: electronic properties, Li batteries, Silicon nanowires, Young's modulus
@article{DESANTIAGO2019438,
title = {Lithiation effects on the structural and electronic properties of Si nanowires as a potential anode material},
author = {F. De Santiago and J. E. Gonz\'{a}lez and A. Miranda and A. Trejo and F. Salazar and L. A. P\'{e}rez and M. Cruz-Irisson},
url = {https://www.sciencedirect.com/science/article/pii/S2405829718313254},
doi = {https://doi.org/10.1016/j.ensm.2019.04.023},
issn = {2405-8297},
year = {2019},
date = {2019-01-01},
journal = {Energy Storage Materials},
volume = {20},
pages = {438-445},
abstract = {The need for better energy-storage materials has attracted much attention to the development of Li-ion battery electrodes. Si nanowires have been considered as alternative electrodes, however the effects of Li on their electronic band gap and mechanical properties have been scarcely studied. In this work, a density functional study of the electronic and mechanical properties of hydrogen passivated silicon nanowires (H-SiNWs) grown along the [001] direction is presented. The Li atoms are gradually inserted at interstitial positions or replacing surface H atoms. The results show that, for surface-lithiated H-SiNWs, the semiconducting band gap decreases when the concentration of Li atoms increases; whereas the H-SiNWs become metallic even with the addition of only one interstitial Li atom. The formation energy diminishes with the concentration of Li atoms for surface-lithiated H-SiNWs, whereas the contrary behavior is found in the interstitial-lithiated H-SiNWs. Furthermore, for the surface-lithiation case, the Li binding energy reveals the existence of SiLi bonds, whereas for the interstitial-lithiation case, the Li binding energy increases when the Li grows up to a critical concentration, where some SiSi bonds break. Finally, for the case of surface-lithiation, the Young's modulus (Y) increases with the concentration of Li, whereas for the interstitial-lithiation case, Y suffers a sudden diminution at a certain Li concentration due to the large internal mechanical stresses within the nanowire structure. These results should be considered when regarding H-SiNWs as potential electrodes in Li-ion battery anodes.},
keywords = {electronic properties, Li batteries, Silicon nanowires, Young's modulus},
pubstate = {published},
tppubtype = {article}
}
© 2022 Grupo de Investigación en Nanociencias de ESIME Culhuacan | All Rights Reserved. | Hecho por Vleeko Agencia de Marketing Digital CDMX
¡Escríbenos!