2023
Cid, Brandom J.; Santana, José E.; Arellano, Lucia G.; Miranda, Álvaro; Pérez-Figueroa, Sara E.; Iturrios, María I.; Pérez, Luis A.; Cruz-Irisson, Miguel
Metal-decorated siligene as work function type sensor for NH3 detection: A DFT approach Artículo de revista
En: Applied Surface Science, vol. 610, pp. 155541, 2023, ISSN: 0169-4332.
Resumen | Enlaces | BibTeX | Etiquetas: 2D SiGe, Ammonia, DFT, Monolayers, Sensing, Work function
@article{CID2023155541,
title = {Metal-decorated siligene as work function type sensor for NH3 detection: A DFT approach},
author = {Brandom J. Cid and Jos\'{e} E. Santana and Lucia G. Arellano and \'{A}lvaro Miranda and Sara E. P\'{e}rez-Figueroa and Mar\'{i}a I. Iturrios and Luis A. P\'{e}rez and Miguel Cruz-Irisson},
url = {https://www.sciencedirect.com/science/article/pii/S0169433222030690},
doi = {https://doi.org/10.1016/j.apsusc.2022.155541},
issn = {0169-4332},
year = {2023},
date = {2023-01-01},
journal = {Applied Surface Science},
volume = {610},
pages = {155541},
abstract = {In this work, we employed density functional theory calculations to investigate the feasibility of X-decorated (X = Li, Na, K, Mg, Ca, Sc, Ti, and Pd) two-dimensional siligene (2D SiGe) for ammonia (NH3) sensing through variations of its work function. The results indicated that NH3 molecule is physisorbed on pristine 2D SiGe. Moreover, Li, Na, K, Sc, Ti, Pd and Ca atoms are chemisorbed on the 2D SiGe, while Mg is barely adsorbed. Likewise, NH3 tends to be adsorbed on the metal atoms of the decorated 2D SiGe with adsorption energies between −0.13 eV and−1.47 eV. The changes observed in the work functions of Na-, Mg-, Ca-, Sc-, and Pd-decorated 2D SiGe upon NH3 may allow its detection. Moreover, the results indicate that only the recovery times of 2D SiGe decorate with Na, K, Ca and Pd atoms could allow for their use as reusable sensors of NH3, while 2D SiGe decorated with Li, Mg, Sc and Ti could be used to trap NH3. From the results of work functions and recovery times on metal decorated 2D SiGe, it is concluded that Pd, Ca, and Na-decorated 2D SiGe are the most suitable material for sensing NH3 molecules.},
keywords = {2D SiGe, Ammonia, DFT, Monolayers, Sensing, Work function},
pubstate = {published},
tppubtype = {article}
}
Arellano, Lucia G.; Cid, Brandom J.; Santana, José E.; Santiago, Francisco De; Miranda, Álvaro; Trejo, Alejandro; Salazar, Fernando; Pérez, Luis A.; Cruz-Irisson, Miguel
DFT investigation of metal-decorated silicon carbide nanosheets for the adsorption of NH3 Artículo de revista
En: Materials Today Communications, vol. 36, pp. 106704, 2023, ISSN: 2352-4928.
Resumen | Enlaces | BibTeX | Etiquetas: 2D materials, Ammonia, DFT, Monolayer, Sensor, Silicon carbide
@article{ARELLANO2023106704,
title = {DFT investigation of metal-decorated silicon carbide nanosheets for the adsorption of NH3},
author = {Lucia G. Arellano and Brandom J. Cid and Jos\'{e} E. Santana and Francisco De Santiago and \'{A}lvaro Miranda and Alejandro Trejo and Fernando Salazar and Luis A. P\'{e}rez and Miguel Cruz-Irisson},
url = {https://www.sciencedirect.com/science/article/pii/S2352492823013958},
doi = {https://doi.org/10.1016/j.mtcomm.2023.106704},
issn = {2352-4928},
year = {2023},
date = {2023-01-01},
journal = {Materials Today Communications},
volume = {36},
pages = {106704},
abstract = {The threat that ammonia (NH3) poses in various human activity environments drives the necessity of sensors of higher sensitivity. Two-dimensional (2D) materials have attracted attention for this particular purpose, with 2D silicon carbide being one prospect for this application. However, this potential use has been relatively unexplored. In this work, we study the adsorption of NH3 on pristine and metal (Li, Na, Mg, Ca, Ag, Au, Cu, Pd, and Ti) decorated silicon carbide monolayers (2D-SiC) using a first-principles approach based on Density-Functional Theory. Energetic analyses were performed to determine the enhancement or deterioration of the NH3 adsorption capacities of the 2D-SiC. The results show that the Ag- and Au-decorated monolayers are the best candidates for NH3 capturing due to the large adsorption energies found in these systems.},
keywords = {2D materials, Ammonia, DFT, Monolayer, Sensor, Silicon carbide},
pubstate = {published},
tppubtype = {article}
}