2023
Santana, José Eduardo; Sosa, Akari Narayama; Santiago, Francisco De; Miranda, Álvaro; Pérez, Luis Antonio; Trejo, Alejandro; Salazar, Fernando; Cruz-Irisson, Miguel
Highly sensitive amphetamine drug detection based on silicon nanowires: Theoretical investigation Artículo de revista
En: Surfaces and Interfaces, vol. 36, pp. 102584, 2023, ISSN: 2468-0230.
Resumen | Enlaces | BibTeX | Etiquetas: Amphetamine, DFT, Doping, Drug, Sensor, Silicon nanowires
@article{SANTANA2023102584,
title = {Highly sensitive amphetamine drug detection based on silicon nanowires: Theoretical investigation},
author = {Jos\'{e} Eduardo Santana and Akari Narayama Sosa and Francisco De Santiago and \'{A}lvaro Miranda and Luis Antonio P\'{e}rez and Alejandro Trejo and Fernando Salazar and Miguel Cruz-Irisson},
url = {https://www.sciencedirect.com/science/article/pii/S2468023022008392},
doi = {https://doi.org/10.1016/j.surfin.2022.102584},
issn = {2468-0230},
year = {2023},
date = {2023-01-01},
journal = {Surfaces and Interfaces},
volume = {36},
pages = {102584},
abstract = {Amphetamine (AA) is used in some therapeutic treatments, but it is also one of the most widely used illicit drugs. Therefore, a correct tracking of AA in various environments is crucial for its controlled distribution even inside the human body. However, current sensors are still too large to fit inside the human body and their biocompatibility is still deficient. Since the discovery of nanostructures, especially silicon nanowires (SiNWs), the possibilities of sensors inside the human body have increased due to their enhanced properties and biocompatibility. However, theoretical studies about the capabilities of SiNWs with surface modifications as sensing materials are still scarce. Using Density Functional Theory, we investigate the effects of amphetamine adsorption on the work function, and other electronic and structural properties, of pristine and modified SiNWs. Two types of modifications were studied, i.e., substitutional doping with B, Al, and Ga atoms and surface functionalization with the same species. The adsorption energies of the amphetamine molecule are larger for the doped nanowires, followed by the functionalized ones, and lastly, the undoped Si nanowire.This study shows that undoped, doped, and functionalized SiNWs are excellent candidates for AA sensing, with B being the best chemical species for improving AA adsorption for both doped and functionalized schemes.},
keywords = {Amphetamine, DFT, Doping, Drug, Sensor, Silicon nanowires},
pubstate = {published},
tppubtype = {article}
}
Arellano, Lucia G.; Cid, Brandom J.; Santana, José E.; Santiago, Francisco De; Miranda, Álvaro; Trejo, Alejandro; Salazar, Fernando; Pérez, Luis A.; Cruz-Irisson, Miguel
DFT investigation of metal-decorated silicon carbide nanosheets for the adsorption of NH3 Artículo de revista
En: Materials Today Communications, vol. 36, pp. 106704, 2023, ISSN: 2352-4928.
Resumen | Enlaces | BibTeX | Etiquetas: 2D materials, Ammonia, DFT, Monolayer, Sensor, Silicon carbide
@article{ARELLANO2023106704,
title = {DFT investigation of metal-decorated silicon carbide nanosheets for the adsorption of NH3},
author = {Lucia G. Arellano and Brandom J. Cid and Jos\'{e} E. Santana and Francisco De Santiago and \'{A}lvaro Miranda and Alejandro Trejo and Fernando Salazar and Luis A. P\'{e}rez and Miguel Cruz-Irisson},
url = {https://www.sciencedirect.com/science/article/pii/S2352492823013958},
doi = {https://doi.org/10.1016/j.mtcomm.2023.106704},
issn = {2352-4928},
year = {2023},
date = {2023-01-01},
journal = {Materials Today Communications},
volume = {36},
pages = {106704},
abstract = {The threat that ammonia (NH3) poses in various human activity environments drives the necessity of sensors of higher sensitivity. Two-dimensional (2D) materials have attracted attention for this particular purpose, with 2D silicon carbide being one prospect for this application. However, this potential use has been relatively unexplored. In this work, we study the adsorption of NH3 on pristine and metal (Li, Na, Mg, Ca, Ag, Au, Cu, Pd, and Ti) decorated silicon carbide monolayers (2D-SiC) using a first-principles approach based on Density-Functional Theory. Energetic analyses were performed to determine the enhancement or deterioration of the NH3 adsorption capacities of the 2D-SiC. The results show that the Ag- and Au-decorated monolayers are the best candidates for NH3 capturing due to the large adsorption energies found in these systems.},
keywords = {2D materials, Ammonia, DFT, Monolayer, Sensor, Silicon carbide},
pubstate = {published},
tppubtype = {article}
}
2021
Santana, José Eduardo; Santiago, Francisco De; Iturrios, Maria Isabel; Miranda, Álvaro; Pérez, Luis Antonio; Cruz-Irisson, Miguel
Adsorption of urea on metal-functionalized Si nanowires for a potential uremia diagnosis: A DFT study Artículo de revista
En: Materials Letters, vol. 298, pp. 130016, 2021, ISSN: 0167-577X.
Resumen | Enlaces | BibTeX | Etiquetas: DFT, Kidney disease, Sensor, Silicon nanowires, Urea
@article{SANTANA2021130016,
title = {Adsorption of urea on metal-functionalized Si nanowires for a potential uremia diagnosis: A DFT study},
author = {Jos\'{e} Eduardo Santana and Francisco De Santiago and Maria Isabel Iturrios and \'{A}lvaro Miranda and Luis Antonio P\'{e}rez and Miguel Cruz-Irisson},
url = {https://www.sciencedirect.com/science/article/pii/S0167577X21007126},
doi = {https://doi.org/10.1016/j.matlet.2021.130016},
issn = {0167-577X},
year = {2021},
date = {2021-01-01},
journal = {Materials Letters},
volume = {298},
pages = {130016},
abstract = {Uncommon concentrations of urea in the human body could be indicative of uremia, which is a symptom of kidney malfunctioning. In this paper, we investigate the effect of urea adsorption on Ag-, Au-, and Cu-decorated silicon nanowires (SiNW). We considered SiNWs grown along the [100] direction with (110) exposed surfaces and passivated with hydrogen. For the metal-decorated SiNWs, an H passivating atom on the SiNW surface is replaced by an Au, Ag, or Cu atom, which is used as adsorption site for the urea molecule. The results show that the metalized SiNWs are capable to adsorb the urea molecule, having the highest adsorption energy for the Cu case, followed by the Ag and Au cases. The adsorption of urea on the metal-decorated SiNW modifies the electronic states inside the valence and conduction bands, this hybridization confirms that the urea molecule is adsorbed by the metalized SiNW. Also, a noticeable change in the work function of the systems, provoked by the urea adsorption, could allow the detection of the molecule. These nanostructures could be used for urea capture and detection, which could lead to a potential nanosensor for the diagnosis of uremia.},
keywords = {DFT, Kidney disease, Sensor, Silicon nanowires, Urea},
pubstate = {published},
tppubtype = {article}
}
Santiago, Francisco De; Santana, José Eduardo; Miranda, Álvaro; Pérez, Luis Antonio; Rurali, Riccardo; Cruz-Irisson, Miguel
Silicon nanowires as acetone-adsorptive media for diabetes diagnosis Artículo de revista
En: Applied Surface Science, vol. 547, pp. 149175, 2021, ISSN: 0169-4332.
Resumen | Enlaces | BibTeX | Etiquetas: Acetone, DFT, Diabetes, Doping, Sensor, Silicon nanowires
@article{DESANTIAGO2021149175,
title = {Silicon nanowires as acetone-adsorptive media for diabetes diagnosis},
author = {Francisco De Santiago and Jos\'{e} Eduardo Santana and \'{A}lvaro Miranda and Luis Antonio P\'{e}rez and Riccardo Rurali and Miguel Cruz-Irisson},
url = {https://www.sciencedirect.com/science/article/pii/S0169433221002518},
doi = {https://doi.org/10.1016/j.apsusc.2021.149175},
issn = {0169-4332},
year = {2021},
date = {2021-01-01},
journal = {Applied Surface Science},
volume = {547},
pages = {149175},
abstract = {Early detection of diabetes, a worldwide health issue, is key for its successful treatment. Acetone is a marker of diabetes, and efficient, non-invasive detection can be achieved with the use of nanotechnology. In this paper we investigate the effect of acetone adsorption on the electronic properties of silicon nanowires (SiNWs) by means of density functional theory. We considered hydrogenated SiNWs grown along the [111] bulk Si axis, with group-III impurities (B, Al, Ga), for which both surface substitutional doping and functionalizing schemes are considered. We present an analysis of the adsorption configuration, energetics, and electronic properties of the undoped and doped SiNWs. Upon acetone adsorption, the SiNW without impurities becomes an n-type semiconductor, while most substituted/functionalized cases have their HOMO-LUMO gap tuned, which could be harnessed in optical sensors. Acetone is always chemisorbed, although for the case without impurities, and the Al- and Ga-functionalization schemes, the chemisorption is very weak. These nanostructures could be used for acetone capture and detection, which could lead to applications in the medical treatment of diabetes.},
keywords = {Acetone, DFT, Diabetes, Doping, Sensor, Silicon nanowires},
pubstate = {published},
tppubtype = {article}
}