2024
Santana, José E.; García, Kevin J.; Hernández-Hernández, Ivonne J.; Miranda, Álvaro; Cruz-Irisson, Miguel; Pérez, Luis A.
Urea adsorption and detection using silicon nanowires doped with B, Al, C, Ge, N, and P: A DFT investigation Artículo de revista
En: Physica B: Condensed Matter, vol. 691, pp. 416332, 2024, ISSN: 0921-4526.
Resumen | Enlaces | BibTeX | Etiquetas: Biosensor, Density Functional Theory, Sensing, Silicon nanowires, Urea
@article{SANTANA2024416332,
title = {Urea adsorption and detection using silicon nanowires doped with B, Al, C, Ge, N, and P: A DFT investigation},
author = {Jos\'{e} E. Santana and Kevin J. Garc\'{i}a and Ivonne J. Hern\'{a}ndez-Hern\'{a}ndez and \'{A}lvaro Miranda and Miguel Cruz-Irisson and Luis A. P\'{e}rez},
url = {https://www.sciencedirect.com/science/article/pii/S0921452624006732},
doi = {https://doi.org/10.1016/j.physb.2024.416332},
issn = {0921-4526},
year = {2024},
date = {2024-01-01},
urldate = {2024-01-01},
journal = {Physica B: Condensed Matter},
volume = {691},
pages = {416332},
abstract = {Urea can serve as a biomarker for the detection of various illnesses, including renal and hepatic failure. Consequently, the development of novel devices and materials capable of adsorbing and identifying urea is a crucial objective for the scientific community. This study theoretically investigates the adsorption and detection capabilities of doped silicon nanowires (SiNWs) for urea using Density Functional Theory (DFT). Doping involves substituting a silicon atom on the surface with a dopant atom; B, Al, C, Ge, N, and P were employed for this purpose. This study presents an innovative method for enhancing urea adsorption and detection by doping SiNWs with group XIII elements, specifically aluminum and boron atoms. The results indicate that this doping significantly improves urea adsorption on SiNWs compared to undoped SiNWs. Notable changes in the bandgaps and work functions of the doped nanowires following urea adsorption suggest their potential use as diagnostic tools for uremia.},
keywords = {Biosensor, Density Functional Theory, Sensing, Silicon nanowires, Urea},
pubstate = {published},
tppubtype = {article}
}
Santana, José E.; García, Kevin J.; Hernández-Hernández, Ivonne J.; Miranda, Álvaro; Cruz-Irisson, Miguel; Pérez, Luis A.
Urea adsorption and detection using silicon nanowires doped with B, Al, C, Ge, N, and P: A DFT investigation Artículo de revista
En: Physica B: Condensed Matter, vol. 691, pp. 416332, 2024, ISSN: 0921-4526.
Resumen | Enlaces | BibTeX | Etiquetas: Biosensor, Density Functional Theory, Sensing, Silicon nanowires, Urea
@article{SANTANA2024416332b,
title = {Urea adsorption and detection using silicon nanowires doped with B, Al, C, Ge, N, and P: A DFT investigation},
author = {Jos\'{e} E. Santana and Kevin J. Garc\'{i}a and Ivonne J. Hern\'{a}ndez-Hern\'{a}ndez and \'{A}lvaro Miranda and Miguel Cruz-Irisson and Luis A. P\'{e}rez},
url = {https://www.sciencedirect.com/science/article/pii/S0921452624006732},
doi = {https://doi.org/10.1016/j.physb.2024.416332},
issn = {0921-4526},
year = {2024},
date = {2024-01-01},
urldate = {2024-01-01},
journal = {Physica B: Condensed Matter},
volume = {691},
pages = {416332},
abstract = {Urea can serve as a biomarker for the detection of various illnesses, including renal and hepatic failure. Consequently, the development of novel devices and materials capable of adsorbing and identifying urea is a crucial objective for the scientific community. This study theoretically investigates the adsorption and detection capabilities of doped silicon nanowires (SiNWs) for urea using Density Functional Theory (DFT). Doping involves substituting a silicon atom on the surface with a dopant atom; B, Al, C, Ge, N, and P were employed for this purpose. This study presents an innovative method for enhancing urea adsorption and detection by doping SiNWs with group XIII elements, specifically aluminum and boron atoms. The results indicate that this doping significantly improves urea adsorption on SiNWs compared to undoped SiNWs. Notable changes in the bandgaps and work functions of the doped nanowires following urea adsorption suggest their potential use as diagnostic tools for uremia.},
keywords = {Biosensor, Density Functional Theory, Sensing, Silicon nanowires, Urea},
pubstate = {published},
tppubtype = {article}
}
2021
Santana, José Eduardo; Santiago, Francisco De; Iturrios, Maria Isabel; Miranda, Álvaro; Pérez, Luis Antonio; Cruz-Irisson, Miguel
Adsorption of urea on metal-functionalized Si nanowires for a potential uremia diagnosis: A DFT study Artículo de revista
En: Materials Letters, vol. 298, pp. 130016, 2021, ISSN: 0167-577X.
Resumen | Enlaces | BibTeX | Etiquetas: DFT, Kidney disease, Sensor, Silicon nanowires, Urea
@article{SANTANA2021130016,
title = {Adsorption of urea on metal-functionalized Si nanowires for a potential uremia diagnosis: A DFT study},
author = {Jos\'{e} Eduardo Santana and Francisco De Santiago and Maria Isabel Iturrios and \'{A}lvaro Miranda and Luis Antonio P\'{e}rez and Miguel Cruz-Irisson},
url = {https://www.sciencedirect.com/science/article/pii/S0167577X21007126},
doi = {https://doi.org/10.1016/j.matlet.2021.130016},
issn = {0167-577X},
year = {2021},
date = {2021-01-01},
journal = {Materials Letters},
volume = {298},
pages = {130016},
abstract = {Uncommon concentrations of urea in the human body could be indicative of uremia, which is a symptom of kidney malfunctioning. In this paper, we investigate the effect of urea adsorption on Ag-, Au-, and Cu-decorated silicon nanowires (SiNW). We considered SiNWs grown along the [100] direction with (110) exposed surfaces and passivated with hydrogen. For the metal-decorated SiNWs, an H passivating atom on the SiNW surface is replaced by an Au, Ag, or Cu atom, which is used as adsorption site for the urea molecule. The results show that the metalized SiNWs are capable to adsorb the urea molecule, having the highest adsorption energy for the Cu case, followed by the Ag and Au cases. The adsorption of urea on the metal-decorated SiNW modifies the electronic states inside the valence and conduction bands, this hybridization confirms that the urea molecule is adsorbed by the metalized SiNW. Also, a noticeable change in the work function of the systems, provoked by the urea adsorption, could allow the detection of the molecule. These nanostructures could be used for urea capture and detection, which could lead to a potential nanosensor for the diagnosis of uremia.},
keywords = {DFT, Kidney disease, Sensor, Silicon nanowires, Urea},
pubstate = {published},
tppubtype = {article}
}