El Dr. Fernando Salazar Posadas es egresado del Instituto de Física “Manuel Sandoval Vallarta” de la Facultad de Ciencias de la Universidad Autónoma de San Luis Potosí. Su trabajo de investigación doctoral lo desarrolló en el Instituto de Investigaciones en Materiales de la UNAM, posteriormente realizó una estancia posdoctoral en el Instituto de Física de la UNAM. Actualmente está adscrito a la Sección de Estudios de Posgrado e Investigación de la Escuela Superior de Ingeniería Mecánica y Eléctrica, unidad Culhuacán del Instituto Politécnico Nacional. Su trabajo de investigación lo desarrolla con el Grupo de Investigación en Nanociencias, en donde se investigan las propiedades físicas y químicas de nanomateriales con modelos y simulación computacional usando la Teoría del Funcional de la Densidad. Estas investigaciones, se aplican para mejorar diferentes sistemas energéticos como las celdas fotovoltaicas, detección de moléculas tóxicas, almacenamiento de hidrógeno, almacenamiento de energía en baterías recargables. En particular, el Dr. Salazar es responsable de desarrollar el modelado teórico, simulación computacional y diseño de electrodos nanoestructurados para su aplicación en baterías recargables. Pertenece al Sistema Nacional de Investigadores del CONACyT desde 2010, es miembro de la Sociedad Mexicana de Física y de la División de Estado Sólido desde 2014. Sus actividades como docente incluyen cursos de matemáticas y física en las carreras de ingeniería y en los programas de posgrado de la ESIME Culhuacán. Ha dirigido dos tesis de licenciatura y nueve en el programa Maestría en Ciencias de Ingeniería en Sistemas Energéticos. Actualmente dirige tres tesis de licenciatura, tres tesis de maestría y una tesis de doctorado en el programa de Doctorado en Energía. En su trayectoria de investigación tiene 29 publicaciones en revistas internacionales, donde se estudian las propiedades electrónicas, mecánicas, vibracionales y de transporte electrónico y térmico de materiales nanoestructurados y sus posibles aplicaciones para mejorar sistemas energéticos. El Dr. Fernando Salazar es actualmente el coordinador del programa Doctorado en Energía de la sede ESIME-Culhuacán, cargo que le fue asignado el 16 de septiembre de 2020.
Enlaces en plataformas académicas
Cid, Brandom Jhoseph; Sosa, Akari Narayama; Miranda, Álvaro; Pérez, Luis Antonio; Salazar, Fernando; Mtz-Enriquez, Arturo I.; Cruz-Irisson, Miguel
Enhanced reversible hydrogen storage performance of light metal-decorated boron-doped siligene: A DFT study Artículo de revista
En: International Journal of Hydrogen Energy, vol. 47, no 97, pp. 41310-41319, 2022, ISSN: 0360-3199, (Future Energy & Materials).
Resumen | Enlaces | BibTeX | Etiquetas: 2D materials, Doping, Energy storage, Hydrogen storage, Siligene
@article{CID202241310,
title = {Enhanced reversible hydrogen storage performance of light metal-decorated boron-doped siligene: A DFT study},
author = {Brandom Jhoseph Cid and Akari Narayama Sosa and \'{A}lvaro Miranda and Luis Antonio P\'{e}rez and Fernando Salazar and Arturo I. Mtz-Enriquez and Miguel Cruz-Irisson},
url = {https://www.sciencedirect.com/science/article/pii/S0360319922012332},
doi = {https://doi.org/10.1016/j.ijhydene.2022.03.153},
issn = {0360-3199},
year = {2022},
date = {2022-01-01},
journal = {International Journal of Hydrogen Energy},
volume = {47},
number = {97},
pages = {41310-41319},
abstract = {The use of nanomaterials for hydrogen storage could play a very important role in the large-scale utilization of hydrogen as an energy source. However, nowadays several potential hydrogen storage nanomaterials do not have a large gravimetric density and stability at room temperature. In this work, we have investigated the hydrogen storage performances of Na-, K- and Ca-decorated B-doped siligene monolayer (BSiGeML) using density functional theory calculations. The results show that boron doping improves the interaction between the metal adatom and the siligene monolayer (SiGeML). The K- and Ca-decorated BSiGeMLs can bind up to seven H2 molecules per metal adatom, whereas Na-decorated BSiGeML only adsorb four H2 molecules per adsorption site. The effect of temperature and pressure on the hydrogen storage capacity of BSiGeMLs was also evaluated. At room temperature, all the H2 molecules adsorbed on Na-, and Ca-decorated BSiGeML are stable at mild pressure. The metal decoration of both sides of BSiGeML may lead to hydrogen gravimetric densities exceeding the target of 5.5 wt% proposed by DOE for the year 2025. K- and Ca-decorated BSiGeML could be efficient hydrogen molecular storage media compared to undoped SiGeML and other 2D pristine materials.},
note = {Future Energy \& Materials},
keywords = {2D materials, Doping, Energy storage, Hydrogen storage, Siligene},
pubstate = {published},
tppubtype = {article}
}
Arellano, Lucia Guadalupe; Santiago, Francisco De; Miranda, Álvaro; Pérez, Luis Antonio; Salazar, Fernando; Trejo, Alejandro; Nakamura, Jun; Cruz-Irisson, Miguel
Ab initio study of hydrogen storage on metal-decorated GeC monolayers Artículo de revista
En: International Journal of Hydrogen Energy, vol. 46, no 57, pp. 29261-29271, 2021, ISSN: 0360-3199, (HYDROGEN ENERGY SYSTEMS).
Resumen | Enlaces | BibTeX | Etiquetas: 2D materials, Alkali metals, DFT, Germanium carbide, Hydrogen storage, Renewable energy
@article{ARELLANO202129261,
title = {Ab initio study of hydrogen storage on metal-decorated GeC monolayers},
author = {Lucia Guadalupe Arellano and Francisco De Santiago and \'{A}lvaro Miranda and Luis Antonio P\'{e}rez and Fernando Salazar and Alejandro Trejo and Jun Nakamura and Miguel Cruz-Irisson},
url = {https://www.sciencedirect.com/science/article/pii/S036031992101555X},
doi = {https://doi.org/10.1016/j.ijhydene.2021.04.135},
issn = {0360-3199},
year = {2021},
date = {2021-01-01},
journal = {International Journal of Hydrogen Energy},
volume = {46},
number = {57},
pages = {29261-29271},
abstract = {Bidimensional nanostructures have been proposed as hydrogen-storage systems owing to their large surface-to-volume ratios. Germanium carbide monolayers (GeC-MLs) can offer attractive opportunities for H2 adsorption compared to graphene. However, this possibility has not been explored in detail. In this work, the adsorption of H2 molecules on GeC-MLs decorated with alkali metal (AM) and alkaline earth metal (AEM) adatoms was investigated using the density functional theory. Results showed that the AM adatoms were chemisorbed on the GeC-ML, whereas AEM adatoms were physisorbed. The H2 molecules presented negligible adsorption energies on the weakly adsorbed AEM adatoms. Conversely, the AM adatoms improved the H2 adsorption, possibly due to a large charge transfer from the adatoms to the GeC-ML. The potassium-decorated GeC-ML exhibited the most optimal H2 storage capacity, adsorbing up to six molecules and with a lower possibility of forming metal clusters than the other studied cases. These results may aid in the development of new efficient hydrogen-storage materials.},
note = {HYDROGEN ENERGY SYSTEMS},
keywords = {2D materials, Alkali metals, DFT, Germanium carbide, Hydrogen storage, Renewable energy},
pubstate = {published},
tppubtype = {article}
}
Sosa, Akari Narayama; Cid, Brandom Jhoseph; Miranda, Álvaro; Pérez, Luis Antonio; Salazar, Fernando; Trejo, Alejandro; Cruz-Irisson, Miguel
Light metal functionalized two-dimensional siligene for high capacity hydrogen storage: DFT study Artículo de revista
En: International Journal of Hydrogen Energy, vol. 46, no 57, pp. 29348-29360, 2021, ISSN: 0360-3199, (HYDROGEN ENERGY SYSTEMS).
Resumen | Enlaces | BibTeX | Etiquetas: 2D materials, Alkali metals, DFT, Hydrogen storage, Renewable energy, Siligene
@article{SOSA202129348,
title = {Light metal functionalized two-dimensional siligene for high capacity hydrogen storage: DFT study},
author = {Akari Narayama Sosa and Brandom Jhoseph Cid and \'{A}lvaro Miranda and Luis Antonio P\'{e}rez and Fernando Salazar and Alejandro Trejo and Miguel Cruz-Irisson},
url = {https://www.sciencedirect.com/science/article/pii/S0360319920340246},
doi = {https://doi.org/10.1016/j.ijhydene.2020.10.175},
issn = {0360-3199},
year = {2021},
date = {2021-01-01},
journal = {International Journal of Hydrogen Energy},
volume = {46},
number = {57},
pages = {29348-29360},
abstract = {In this work, the hydrogen storage capacities of two-dimensional siligene (2D-SiGe) functionalized with alkali metal (AM) and alkali-earth metal (AEM) atoms were studied using density functional theory calculations. One AM (Li, Na, K) or AEM (Be, Mg, Ca) atom was placed on the 2D-SiGe surface, and several H2 molecules were placed in the vicinity of the adatom. The results demonstrate that the most favorable siligene site for the adsorption of Li, Na, K and Be atoms is the hollow site, while for the Mg and Ca atoms is the down site. The AM atoms are the only ones with considerable binding energies on the SiGe nanosheets. Pristine 2D-SiGe slightly adsorbs one H2 molecule per hollow site and, therefore, it is not suitable for hydrogen storage. In some of the AM- and AEM-decorated 2D-SiGe, several hydrogen molecules can be physisorbed. In particular, the Na-, K- and Ca-functionalized 2D-SiGe can adsorb six hydrogen molecules, whereas Li and Mg atoms adsorbed three hydrogen molecules, and the Be adatom only adsorbed one hydrogen molecule. The complexes formed by hydrogen molecules adsorbed on the analyzed metal decorated 2D-SiGe are energetically stable, indicating that functionalized 2D-SiGe could be an efficient molecular hydrogen storage media.},
note = {HYDROGEN ENERGY SYSTEMS},
keywords = {2D materials, Alkali metals, DFT, Hydrogen storage, Renewable energy, Siligene},
pubstate = {published},
tppubtype = {article}
}
Sosa, Akari Narayama; Santiago, Francisco; Miranda, Álvaro; Trejo, Alejandro; Salazar, Fernando; Pérez, Luis Antonio; Cruz-Irisson, Miguel
Alkali and transition metal atom-functionalized germanene for hydrogen storage: A DFT investigation Artículo de revista
En: International Journal of Hydrogen Energy, vol. 46, no 38, pp. 20245-20256, 2021, ISSN: 0360-3199, (International Journal of Hydrogen Energy Special Issue devoted to the 32nd International Conference ECOS 2019).
Resumen | Enlaces | BibTeX | Etiquetas: 2D materials, Decoration, Density Functional Theory, Germanene, Hydrogen storage, Renewable energy storage
@article{SOSA202120245,
title = {Alkali and transition metal atom-functionalized germanene for hydrogen storage: A DFT investigation},
author = {Akari Narayama Sosa and Francisco Santiago and \'{A}lvaro Miranda and Alejandro Trejo and Fernando Salazar and Luis Antonio P\'{e}rez and Miguel Cruz-Irisson},
url = {https://www.sciencedirect.com/science/article/pii/S0360319920315329},
doi = {https://doi.org/10.1016/j.ijhydene.2020.04.129},
issn = {0360-3199},
year = {2021},
date = {2021-01-01},
journal = {International Journal of Hydrogen Energy},
volume = {46},
number = {38},
pages = {20245-20256},
abstract = {In this work, we have performed density functional theory-based calculations to study the adsorption of H2 molecules on germanene decorated with alkali atoms (AM) and transition metal atoms (TM). The cohesive energy indicates that interaction between AM (TM) atoms and germanene is strong. The values of the adsorption energies of H2 molecules on the AM or TM atoms are in the range physisorption. The K-decorated germanene has the largest storage capacity, being able to bind up to six H2 molecules, whereas the Au and Na atoms adsorbed five and four H2 molecules, respectively. Li and Ag atoms can bind a maximum of three H2 molecules, while Cu-decorated germanene only adsorbed one H2 molecule. Formation energies show that all the studied cases of H2 molecules adsorbed on AM and TM atom-decorated germanene are energetically favorable. These results indicate that decorated germanene can serve as a hydrogen storage system.},
note = {International Journal of Hydrogen Energy Special Issue devoted to the 32nd International Conference ECOS 2019},
keywords = {2D materials, Decoration, Density Functional Theory, Germanene, Hydrogen storage, Renewable energy storage},
pubstate = {published},
tppubtype = {article}
}
Arellano, Lucía G.; Santiago, Francisco; Miranda, Álvaro; Salazar, Fernando; Trejo, Alejandro; Pérez, Luis A.; Cruz-Irisson, Miguel
Hydrogen storage capacities of alkali and alkaline-earth metal atoms on SiC monolayer: A first-principles study Artículo de revista
En: International Journal of Hydrogen Energy, vol. 46, no 38, pp. 20266-20279, 2021, ISSN: 0360-3199, (International Journal of Hydrogen Energy Special Issue devoted to the 32nd International Conference ECOS 2019).
Resumen | Enlaces | BibTeX | Etiquetas: 2D monolayers, Adsorption energy, DFT, Hydrogen storage, Silicon carbide
@article{ARELLANO202120266,
title = {Hydrogen storage capacities of alkali and alkaline-earth metal atoms on SiC monolayer: A first-principles study},
author = {Luc\'{i}a G. Arellano and Francisco Santiago and \'{A}lvaro Miranda and Fernando Salazar and Alejandro Trejo and Luis A. P\'{e}rez and Miguel Cruz-Irisson},
url = {https://www.sciencedirect.com/science/article/pii/S0360319920310144},
doi = {https://doi.org/10.1016/j.ijhydene.2020.03.078},
issn = {0360-3199},
year = {2021},
date = {2021-01-01},
journal = {International Journal of Hydrogen Energy},
volume = {46},
number = {38},
pages = {20266-20279},
abstract = {A detailed theoretical Density-Functional-Theory-based investigation of hydrogen adsorption on silicon carbide monolayers (SiC-ML) decorated with alkali and alkaline-earth metal atoms is presented. The results show that the favourable position for all adsorbed metal atoms is above a Si atom. These metal atoms are chemisorbed to the SiC-ML, except for Mg which is physisorbed. The adsorbed atoms act in turn as adsorption sites for H2 molecules. The single-sided K-functionalized SiC-ML can store up to six H2 molecules. For double-side K-decorated SiC-ML, up to ten H2 molecules can be captured. In all cases, the H2 molecules are physisorbed. This is beneficial because the breaking of chemical bonds, which otherwise would be needed to make use of the stored H2, is energetically expensive. These results find decorated SiC-ML as a promising material for hydrogen storage systems.},
note = {International Journal of Hydrogen Energy Special Issue devoted to the 32nd International Conference ECOS 2019},
keywords = {2D monolayers, Adsorption energy, DFT, Hydrogen storage, Silicon carbide},
pubstate = {published},
tppubtype = {article}
}
Cid, Brandom Jhoseph; Sosa, Akari Narayama; Miranda, Álvaro; Pérez, Luis A.; Salazar, Fernando; Cruz-Irisson, Miguel
Hydrogen storage on metal decorated pristine siligene and metal decorated boron-doped siligene Artículo de revista
En: Materials Letters, vol. 293, pp. 129743, 2021, ISSN: 0167-577X.
Resumen | Enlaces | BibTeX | Etiquetas: 2D materials, Doping, Energy storage, Hydrogen storage, Siligene
@article{CID2021129743,
title = {Hydrogen storage on metal decorated pristine siligene and metal decorated boron-doped siligene},
author = {Brandom Jhoseph Cid and Akari Narayama Sosa and \'{A}lvaro Miranda and Luis A. P\'{e}rez and Fernando Salazar and Miguel Cruz-Irisson},
url = {https://www.sciencedirect.com/science/article/pii/S0167577X21004390},
doi = {https://doi.org/10.1016/j.matlet.2021.129743},
issn = {0167-577X},
year = {2021},
date = {2021-01-01},
journal = {Materials Letters},
volume = {293},
pages = {129743},
abstract = {In this work, two schemes were studied to improve hydrogen storage on metal decorated two-dimensional siligene (SiGe). In the first one, Li-, Sc- and Ti atoms are adsorbed on pristine siligene monolayer (SiGeML), while in the second scheme Li-, Sc- and Ti atoms decorated B-doped siligene monolayer (BSiGeML). The results show that boron doping improves the interaction between metal atom and SiGeML. The numerical results indicate that H2 molecules are slightly physisorbed on the Li atom, while they are strongly physisorbed on Sc- and Ti-decorated monolayers. The Sc-decorated BSiGeML and Sc-decorated SiGeML have the highest hydrogen storage capacity, both systems were capable of storing five H2 molecules, whereas Li- and Ti-decorated BSiGeML and Ti-decorated SiGeML can adsorb up to four H2 molecules. SiGeML and BSiGeML decorated with Sc atoms could have potential as efficient hydrogen molecular storage media.},
keywords = {2D materials, Doping, Energy storage, Hydrogen storage, Siligene},
pubstate = {published},
tppubtype = {article}
}
González, Israel; Santiago, Francisco De; Arellano, Lucía G.; Miranda, Álvaro; Trejo, Alejandro; Salazar, Fernando; Cruz-Irisson, Miguel
Theoretical modelling of porous silicon decorated with metal atoms for hydrogen storage Artículo de revista
En: International Journal of Hydrogen Energy, vol. 45, no 49, pp. 26321-26333, 2020, ISSN: 0360-3199, (Progress in Hydrogen Production and Utilization).
Resumen | Enlaces | BibTeX | Etiquetas: Beryllium, DFT, Hydrogen storage, Lithium, Palladium, porous silicon
@article{GONZALEZ202026321,
title = {Theoretical modelling of porous silicon decorated with metal atoms for hydrogen storage},
author = {Israel Gonz\'{a}lez and Francisco De Santiago and Luc\'{i}a G. Arellano and \'{A}lvaro Miranda and Alejandro Trejo and Fernando Salazar and Miguel Cruz-Irisson},
url = {https://www.sciencedirect.com/science/article/pii/S0360319920318784},
doi = {https://doi.org/10.1016/j.ijhydene.2020.05.097},
issn = {0360-3199},
year = {2020},
date = {2020-01-01},
journal = {International Journal of Hydrogen Energy},
volume = {45},
number = {49},
pages = {26321-26333},
abstract = {There is experimental evidence suggesting that metal adatoms enhance the physisorption of hydrogen molecules in porous silicon. However, theoretical reports about the physical properties for this material to be suitable for hydrogen storage are scarce. Thus, in this work we employ Density Functional Theory to study the effects of decoration with metals on the hydrogen-adsorption properties on hydrogen-passivated porous silicon. The results indicate that lithium and palladium decorating atoms are strongly bonded to the porous silicon\textemdashpreventing the adverse effects of clusterization\textemdashwhile beryllium is not. Lithium and palladium exhibit physisorption capacity up to 5 and 4 hydrogen molecules per adatom, respectively. In contrast, adsorption of hydrogen molecules in beryllium is too weak as the adatom is not chemisorbed on the surface of the pore. The hydrogen passivation of the pore surface proves to be beneficial for a strong chemisorption of the decorating atoms.},
note = {Progress in Hydrogen Production and Utilization},
keywords = {Beryllium, DFT, Hydrogen storage, Lithium, Palladium, porous silicon},
pubstate = {published},
tppubtype = {article}
}
© 2022 Grupo de Investigación en Nanociencias de ESIME Culhuacan | All Rights Reserved. | Hecho por Vleeko Agencia de Marketing Digital CDMX
¡Escríbenos!